36 research outputs found

    BarA-UvrY Two-Component System Regulates Virulence of Uropathogenic E. coli CFT073

    Get PDF
    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract

    UreR, the Transcriptional Activator of the Proteus mirabilis Urease Gene Cluster, Is Required for Urease Activity and Virulence in Experimental Urinary Tract Infections

    Get PDF
    Proteus mirabilis, a cause of complicated urinary tract infection, produces urease, an essential virulence factor for this species. UreR, a member of the AraC/XylS family of transcriptional regulators, positively activates expression of the ure gene cluster in the presence of urea. To specifically evaluate the contribution of UreR to urease activity and virulence in the urinary tract, a ureR mutation was introduced into P. mirabilis HI4320 by homologous recombination. The isogenic ureR::aphA mutant, deficient in UreR production, lacked measurable urease activity. Expression was not detected in the UreR-deficient strain by Western blotting with monoclonal antibodies raised against UreD. Urease activity and UreD expression were restored by complementation of the mutant strain with ureR expressed from a low-copy-number plasmid. Virulence was assessed by transurethral cochallenge of CBA mice with wild-type and mutant strains. The isogenic ureR::aphA mutant of HI4320 was outcompeted in the urine (P = 0.004), bladder (P = 0.016), and kidneys (P ≤ 0.001) 7 days after inoculation. Thus, UreR is required for basal urease activity in the absence of urea, for induction of urease by urea, and for virulence of P. mirabilis in the urinary tract

    Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract.

    No full text
    Escherichia coli is the leading cause of urinary tract infections (UTIs). Despite the association of numerous bacterial factors with uropathogenic E. coli (UPEC), few such factors have been proved to be required for UTI in animal models. Previous investigations of urovirulence factors have relied on prior identification of phenotypic characteristics. We used signature-tagged mutagenesis (STM) in an unbiased effort to identify genes that are essential for UPEC survival within the murine urinary tract. A library of 2049 transposon mutants of the prototypic UPEC strain CFT073 was constructed using mini-Tn5km2 carrying 92 unique tags and screened in a murine model of ascending UTI. After initial screening followed by confirmation in co-infection experiments, 19 survival-defective mutants were identified. These mutants were recovered in numbers 101- to 106-fold less than the wild type in the bladder, kidneys or urine or at more than one site. The transposon junctions from each attenuated mutant were sequenced and analysed. Mutations were found in: (i) the type 1 fimbrial operon; (ii) genes involved in the biosyn-thesis of extracellular polysaccharides including group I capsule, group II capsule and enterobacterial common antigen; (iii) genes involved in metabolic pathways; and (iv) genes with unknown function. Five of the genes identified are absent from the genome of the E. coli K-12 strain. Mutations in type 1 fimbrial genes resulted in severely attenuated colonization, even in the case of a mutant with an insertion upstream of the fim operon that affected the rate of fimbrial switching from the 'off' to the 'on' phase. Three mutants had insertions in a new type II capsule biosynthesis locus on a pathogenicity island and were impaired in the production of capsule in vivo. An additional mutant with an insertion in wecE was unable to synthesize enterobacterial common antigen. These results confirm the pre-eminence of type 1 fimbriae, establish the importance of extracellular polysaccharides in the pathogenesis of UTI and identify new urovirulence determinants

    Visualization of Proteus mirabilis Morphotypes in the Urinary Tract: the Elongated Swarmer Cell Is Rarely Observed in Ascending Urinary Tract Infection

    No full text
    Proteus mirabilis, a common cause of nosocomial and catheter-associated urinary tract infection, colonizes the bladder and ascends the ureters to the proximal tubules of the kidneys, leading to the development of acute pyelonephritis. P. mirabilis is capable of swarming, a form of multicellular behavior in which bacteria differentiate from the short rod typical of members of the family Enterobacteriaceae, termed the swimmer cell, into hyperflagellated elongated bacteria capable of rapid and coordinated population migration across surfaces, called the swarmer cell. There has been considerable debate as to which morphotype predominates during urinary tract infection. P. mirabilis(pBAC001), which expresses green fluorescent protein in both swimming and swarming morphotypes, was constructed to quantify the prevalence of each morphotype in ascending urinary tract infection. Transurethral inoculation of P. mirabilis(pBAC001) resulted in ascending urinary tract infection and kidney pathology in mice examined at both 2 and 4 days postinoculation. Using confocal microscopy, we were able to investigate the morphotypes of the bacteria in the urinary tract. Of 5,087 bacteria measured in bladders, ureters, and kidneys, only 7 (0.14%) were identified as swarmers. MR/P fimbria expression, which correlates with the swimmer phenotype, is prevalent on bacteria in the ureters and bladder. We conclude that, by far, the predominant morphotype present in the urinary tract during ascending infection is the short rod-the swimmer cell

    Visualization of Proteus mirabilis within the Matrix of Urease-Induced Bladder Stones during Experimental Urinary Tract Infection

    No full text
    The virulence of a urease-negative mutant of uropathogenic Proteus mirabilis and its wild-type parent strain was assessed by using a CBA mouse model of catheterized urinary tract infection. Overall, catheterized mice were significantly more susceptible than uncatheterized mice to infection by wild-type P. mirabilis. At a high inoculum, the urease-negative mutant successfully colonized bladders of catheterized mice but did not cause urolithiasis and was still severely attenuated in its ability to ascend to kidneys. Using confocal laser scanning microscopy and scanning electron microscopy, we demonstrated the presence of P. mirabilis within the urease-induced stone matrix. Alizarin red S staining was used to detect calcium-containing deposits in bladder and kidney tissues of P. mirabilis-infected mice

    Role of Phase Variation of Type 1 Fimbriae in a Uropathogenic Escherichia coli Cystitis Isolate during Urinary Tract Infection

    No full text
    Type 1 fimbrial phase-locked mutants of uropathogenic Escherichia coli cystitis isolate F11 were used to assess the role of the invertible element during urinary tract infection. Compared to the wild type, the phase-locked off mutant was attenuated, and constitutive production of type 1 fimbriae by the phase-locked on mutant did not provide a competitive advantage
    corecore