328 research outputs found

    Comparative Study of Active Flow Control Strategies for Lift Enhancement of a Simplified High-Lift Configuration

    Get PDF
    Numerical simulations have been performed for a simplified high-lift (SHL) version of the Common Research Model (CRM) configuration, where the Fowler flaps of the conventional high-lift (CRM-HL) configuration are replaced by a set of simple hinged flaps. These hinged flaps are equipped with integrated modular active flow control (AFC) cartridges on the suction surface, and the resulting geometry is known as the CRM-SHL-AFC configuration. The main objective is to make use of AFC devices on the CRM-SHL-AFC configuration to recover the aerodynamic performance (lift) of the CRM-HL configuration. In the current paper, a Lattice Boltzmann method-based computational fluid dynamics (CFD) code, known as PowerFLOWQ is used to simulate the entire flow field associated with the CRM-SHL-AFC configuration equipped with several different types of AFC devices. The transonic version of the PowerFLOWQ code that has been validated for high speed flows is used to accurately simulate the flow field generated by the high-momentum actuators required to mitigate reversed flow regions on the suction surfaces of the main wing and the flap. The numerical solutions predict the expected trends in aerodynamic forces as the actuation levels are increased. More efficient AFC systems and actuator arrangements emerged based on the parametric studies performed prior to a Fall 2018 wind tunnel test. Preliminary comparisons of the numerical solutions for lift and surface pressures are presented here with the experimental data, demonstrating the usefulness of CFD for predicting the flow field and lift characteristics of AFC-enabled high-lift configurations

    Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Get PDF
    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings

    A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    Get PDF
    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® were well correlated with sonication. Two other methods, Bugbuster® and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability
    corecore