341 research outputs found

    Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Full text link
    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (). The advantage of such a structure is then discussed

    Uniaxial anisotropy and enhanced magnetostriction of CoFe2_2O4_4 induced by reaction under uniaxial pressure with SPS

    Full text link
    In this study, we have compared magnetic and magnetostrictive properties of polycrystalline CoFe2_2O4_4 pellets, produced by three different methods, focusing on the use of Spark Plasma Sintering (SPS). This technique allows a very short heat treatment stage while a uniaxial pressure is applied. SPS was utilized to sinter cobalt ferrite but also to make the reaction and the sintering (reactive sintering) of the same ceramic composition. Magnetic and magnetostrictive measurements show that the reactive sintering with SPS induces a uniaxial anisotropy, while it is not the case with a simple sintering process. The induced anisotropy is then expected to be a consequence of the reaction under uniaxial pressure. This anisotropy enhanced the magnetostrictive properties of the sample, where a maximum longitudinal magnetostriction of −229-229~ppm is obtained. This process can be a promising alternative to the magnetic-annealing because of the short processing time required (22 minutes)

    Program Review Request for Rationale

    Get PDF

    Bylaws Revision: census and apportionment

    Get PDF

    Census and Apportionment

    Get PDF

    Guidelines for the Faculty Grievance Committee

    Get PDF

    Committee Alternates Proposal

    Get PDF

    Apportionment: COBA and COST to Information Technology

    Get PDF

    Faculty Senate Representation of the New IT College

    Get PDF
    • …
    corecore