1,241 research outputs found

    Análise da situação da cultura do arroz de terras altas no Meio Norte do Mato Grosso.

    Get PDF
    Nos Estados do Centro-Oeste, onde predomina o arroz de terras altas, as áreas arrozeiras alcançam cerca de 600 mil hectares, representando 18% da área total e contribuindo com aproximadamente 15% da produção brasileira. Nas três últimas safras, o Mato Grosso tem-se apresentado como o segundo maior produtor de arroz do Brasil, basicamente com o arroz de terras altas. Na safra 2002/03, a produção foi de 1.208.000 toneladas, com uma produtividade média de 2.800 kg/ha e uma área total plantada de 431,5 mil hectares. No contexto nacional, sua participação na produção foi de 10,5%. Em termos de produtividade, novamente o Mato Grosso se destaca com um incremento de 7,7% ao ano, enquanto no Rio Grande do Sul a taxa média é de 1,4% ao ano. Em resumo, apesar de alguns pontos de estrangulamento tecnológico não estarem totalmente solucionados no Estado do Mato Grosso, o arroz de terras altas apresenta espaço para crescer. Com o objetivo de identificar os anseios e as dificuldades vivenciadas pelos produtores de arroz do Meio Norte do Estado do Mato Grosso, bem como verificar a atual dinâmica da cultura e a integração entre os elos da cadeia produtiva do setor, uma equipe de pesquisadores da Embrapa Arroz e Feijão realizou uma excursão técnica na região em dezembro de 2002.bitstream/CNPAF/21631/1/doc_151.pd

    Semi-field evaluation of a volatile transfluthrin-based intervention reveals efficacy as a spatial repellent and evidence of other modes of action

    Get PDF
    Presently, the most common malaria control tools-i.e., long lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS)-are limited to targeting indoor biting and resting behaviors of Anopheles mosquito species. Few interventions are targeted towards malaria control in areas where transmission is driven or persists due to outdoor biting behaviors. This study investigated a volatile pyrethroid-based spatial repellent (VPSR) designed to bridge this gap and provide protection from mosquito bites in outdoor spaces. Southern Province, Zambia, is one such environment where outdoor biting is suspected to contribute to malaria transmission, where people are active in the evening in open-walled outdoor kitchens. This study assessed the VPSR in replica kitchens within a controlled semi-field environment. Endpoints included effects on mosquito host seeking, immediate and delayed mortality, deterrence, blood feeding inhibition, and fertility. Host-seeking was reduced by approximately 40% over the course of nightly releases in chambers containing VPSR devices. Mosquito behavior was not uniform throughout the night, and the modeled effect of the intervention was considerably higher when hourly catch rates were considered. These two observations highlight a limitation of this overnight semi-field design and consideration of mosquito circadian rhythms is recommended for future semi-field studies. Additionally, deterrence and immediate mortality were both observed in treatment chambers, with evidence of delayed mortality and a dose related response. These results demonstrate a primarily personal protective mode of action with possible positive and negative community effects. Further investigation into this primary mode of action will be conducted through a field trial of the same product in nearby communities

    Exploring the Thermodynamics of a Universal Fermi Gas

    Full text link
    From sand piles to electrons in metals, one of the greatest challenges in modern physics is to understand the behavior of an ensemble of strongly interacting particles. A class of quantum many-body systems such as neutron matter and cold Fermi gases share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit [1,2]. It is then possible to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap [3-5], making it difficult to compare with many-body theories developed for uniform gases. Here we develop a general method that provides for the first time the equation of state of a uniform gas, as well as a detailed comparison with existing theories [6,14]. The precision of our equation of state leads to new physical insights on the unitary gas. For the unpolarized gas, we prove that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2% accuracy and it extends the work of [15] on the phase diagram to a new regime of precision. We show in particular that, despite strong correlations, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure

    New agegraphic dark energy in Horava-Lifshitz cosmology

    Full text link
    We investigate the new agegraphic dark energy scenario in a universe governed by Horava-Lifshitz gravity. We consider both the detailed and non-detailed balanced version of the theory, we impose an arbitrary curvature, and we allow for an interaction between the matter and dark energy sectors. Extracting the differential equation for the evolution of the dark energy density parameter and performing an expansion of the dark energy equation-of-state parameter, we calculate its present and its low-redshift value as functions of the dark energy and curvature density parameters at present, of the Horava-Lifshitz running parameter λ\lambda, of the new agegraphic dark energy parameter nn, and of the interaction coupling bb. We find that w0=0.820.08+0.08w_0=-0.82^{+0.08}_{-0.08} and w1=0.080.07+0.09w_1=0.08^{+0.09}_{-0.07}. Although this analysis indicates that the scenario can be compatible with observations, it does not enlighten the discussion about the possible conceptual and theoretical problems of Horava-Lifshitz gravity.Comment: 17 pages, no figures, version published at JCA

    Solidification of Al alloys under electromagnetic pulses and characterization of the 3D microstructures under synchrotron x-ray tomography

    Get PDF
    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field

    Thin accretion disk signatures of slowly rotating black holes in Ho\v{r}ava gravity

    Get PDF
    In the present work, we consider the possibility of observationally testing Ho\v{r}ava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating Kehagias-Sfetsos geometry in Ho\v{r}ava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating Kehagias-Sfetsos solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Ho\v{r}ava gravity models by using astrophysical observations of the emission spectra from accretion disks.Comment: 12 pages, 15 figures. V2: 13 pages, clarifications and discussion added; version accepted for publication in Classical and Quantum Gravit

    Coeficiente de correlação entre medidas de peso, perímetro torácico e circunferência escrotal em ovinos da raça Morada Nova.

    Get PDF
    O objetivo deste trabalho foi estimar correlações entre peso corporal, perímetro torácico e circunferência escrotal de ovinos da raça Morada Nova

    Horava-Lifshitz Holography

    Full text link
    We derive the detailed balance condition as a solution to the Hamilton-Jacobi equation in the Horava-Lifshitz gravity. This result leads us to propose the existence of the d-dimensional quantum field theory on the future boundary of the (d+1)-dimensional Horava-Lifshitz gravity from the viewpoint of the holographic renormalization group. We also obtain a Ricci flow equation of the boundary theory as the holographic RG flow, which is the Hamilton equation in the bulk gravity, by tuning parameters in the theory.Comment: 7 page

    Molecular characterization and gene expression analysis of the pro-inflammatory cytokines IL-1beta and IL-8 in the South American fish Piaractus mesopotamicus challenged with Aeromonas dhakensis.

    Get PDF
    In the present study, the complete characterization of cDNA and genomic sequences of IL-1B and IL-8, as well as the expression profile of these genes in the South American fish pacu (Piaractus mesopotamicus) is provided. The full-length pmIL-1B cDNA was composed of 1208 nucleotides that would produce a precursor peptide with 273 amino acid residues. A putative caspase-1 cleavage site, similar to what is found in mammalian IL-1B, was identified producing a mature peptide with a theoretical molecular weight of 17.21 kDa. The pmIL-8 cDNA sequence consisted of 1019 nucleotides which encoded a 95-amino acid protein with a theoretical molecular weight of 10.43 kDa that showed all typical CXC chemokine features, including a 20-residue signal peptide and four conserved cysteine residues. Constitutive mRNA expression was detected for both genes in the liver, head kidney, gill, intestine, skin and spleen. After a bacterial challenge, up-regulation was detected for both pmIL-1B and pmIL-8 in the spleen and head kidney at 12 h post-infection. At 24 h post-infection there was a decrease in the expression of both genes, with pmIL-8 showing a significant down-regulation in the liver and head kidney when compared to the control groups

    piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Much of the <it>Plasmodium falciparum </it>genome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of the <it>Plasmodium </it>genome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of the <it>Plasmodium </it>genome.</p> <p>Results</p> <p>In this study, we investigated the lepidopteran transposon, <it>piggyBac</it>, as a molecular genetic tool for functional characterization of the <it>Plasmodium falciparum </it>genome. Through multiple transfections, we generated 177 unique <it>P. falciparum </it>mutant clones with mostly single <it>piggyBac </it>insertions in their genomes. Analysis of <it>piggyBac </it>insertion sites revealed random insertions into the <it>P. falciparum </it>genome, in regards to gene expression in parasite life cycle stages and functional categories. We further explored the possibility of forward genetic studies in <it>P. falciparum </it>with a phenotypic screen for attenuated growth, which identified several parasite genes and pathways critical for intra-erythrocytic development.</p> <p>Conclusion</p> <p>Our results clearly demonstrate that <it>piggyBac </it>is a novel, indispensable tool for forward functional genomics in <it>P. falciparum </it>that will help better understand parasite biology and accelerate drug and vaccine development.</p
    corecore