13 research outputs found

    Optimized exosome isolation protocol for cell culture supernatant and human plasma.

    Get PDF
    Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential standardized method that is effective, reproducible and can be utilized for various starting materials. We believe this method will have extensive application in the growing field of extracellular vesicle research

    Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Get PDF
    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications

    α4β1 Integrin Regulates Lamellipodia Protrusion via a Focal Complex/Focal Adhesion-independent Mechanism

    No full text
    α4β1 integrin plays an important role in cell migration. We show that when ectopically expressed in Chinese hamster ovary cells, α4β1 is sufficient and required for promoting protrusion of broad lamellipodia in response to scratch-wounding, whereas α5β1 does not have this effect. By time-lapse microscopy of cells expressing an α4/green fluorescent protein fusion protein, we show that α4β1 forms transient puncta at the leading edge of cells that begin to protrude lamellipodia in response to scratch-wounding. The cells expressing a mutant α4/green fluorescent protein that binds paxillin at a reduced level had a faster response to scratch-wounding, forming α4-positive puncta and protruding lamellipodia much earlier. While enhancing lamellipodia protrusion, this mutation reduces random motility of the cells in Transwell assays, indicating that lamellipodia protrusion and random motility are distinct types of motile activities that are differentially regulated by interactions between α4β1 and paxillin. Finally, we show that, at the leading edge, α4-positive puncta and paxillin-positive focal complexes/adhesions do not colocalize, but α4β1 and paxillin colocalize partially in ruffles. These findings provide evidence for a specific role of α4β1 in lamellipodia protrusion that is distinct from the motility-promoting functions of α5β1 and other integrins that mediate cell adhesion and signaling events through focal complexes and focal adhesions
    corecore