6 research outputs found
Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem
Climate and land-use changes are projected to threaten biodiversity over this century. However, few studies have considered the spatial and temporal overlap of these threats to evaluate how ongoing land-use change could affect species ranges projected to shift outside conservation areas. We evaluated climate change and urban development effects on vegetation distribution in the Southwest ecoregion, California Floristic Province, USA. We also evaluated how well a conservation network protects suitable habitat for rare plant species under these change projections and identified primary sources of uncertainty. We used consensus-based maps from three species distribution models (SDMs) to project current and future suitable habitat for 19 species representing different functional types (defined by fire-response - obligate seeders, resprouting shrubs - and life forms - herbs, subshrubs), and range sizes (large/common, small/rare). We used one spatially explicit urban growth projection; two climate models, emission scenarios, and probability thresholds applied to SDMs; and high-resolution (90 m) environmental data. We projected that suitable habitat could disappear for 4 species and decrease for 15 by 2080. Averaged centroids of suitable habitat (all species) were projected to shift tens (up to hundreds) of kilometers. Herbs showed a small-projected response to climate change, while obligate seeders could suffer the greatest losses. Several rare species could lose suitable habitat inside conservation areas while increasing area outside. We concluded that (i) climate change is more important than urban development for vegetation habitat loss in this ecoregion through 2080 due to diminishing amounts of undeveloped private land in this region; (ii) the existing conservation plan, while extensive, may be inadequate to protect plant diversity under projected patterns of climate change and urban development, (iii) regional assessments of the dynamics of the drivers of biodiversity change based on high-resolution environmental data and consensus predictive mapping, such as this study, are necessary to identify the species expected to be the most vulnerable and to meaningfully inform regional-scale conservation. 漏 2013 漏 2013 Taylor & Francis