43 research outputs found

    Amphiphilic AIEgen-polymer aggregates: Design, self-assembly and biomedical applications

    Get PDF
    Aggregation-induced emission (AIE) is a phenomenon in which fluorescence is enhanced rather than quenched upon molecular assembly. AIE fluorogens (AIEgens) are flexible, conjugated systems that are limited in their dynamics when assembled, which improves their fluorescent properties. This intriguing feature has been incorporated in many different molecular assemblies and has been extended to nanoparticles composed of amphiphilic polymer building blocks. The integration of the fascinating AIE design principle with versatile polymer chemistry opens up new frontiers to approach and solve intrinsic obstacles of conventional fluorescent materials in nanoscience, including the aggregation-caused quenching effect. Furthermore, this integration has drawn significant attention from the nanomedicine community, due to the additional advantages of nanoparticles comprising AIEgenic molecules, such as emission brightness and fluorescence stability. In this regard, a range of AIEgenic amphiphilic polymers have been developed, displaying enhanced emission in the self-assembly/aggregated state. AIEgenic assemblies are regarded as attractive nanomaterials with inherent fluorescence, which display promising features in a biomedical context, for instance in biosensing, cell/tissue imaging and tracking, as well as (photo) therapeutics. In this review, we describe recent strategies for the design and synthesis of novel types of AIEgenic amphiphilic polymers via facile approaches including direct conjugation to natural/synthetic polymers, polymerization, post-polymerization and supramolecular host−guest interactions. Their self-assembly behavior and biomedical potential will be discussed

    Spatial Organization in Proteinaceous Membrane‐Stabilized Coacervate Protocells

    Get PDF
    As a model protocell, the membrane-free coacervate microdroplet is widely utilized in functional studies to provide insights into the physicochemical properties of the cell and to engineer cytomimetic soft technologies; however, the lack of a discrete membrane contributes to its instability and limits further application. Herein, a strategy is developed to fabricate a hybrid protocell based on the self-assembly of a proteinaceous membrane at the surface of coacervate microdroplets driven by a combination of electrostatic adhesion and steric/hydrophilic surface buoyancy. The semipermeable proteinaceous membrane can enhance coacervate stability obviously without compromising sequestration behavior. Significantly, such hybrid protocells demonstrate spatial organization whereby various functional enzymes can be located in discrete regions, which facilitates an on/off modulation for a cascade enzymatic reaction along with enhanced chemical communication between subpopulations

    Models of Chemical Communication for Micro/Nanoparticles

    Get PDF
    Engineering chemical communication between micro/nanosystems (via the exchange of chemical messengers) is receiving increasing attention from the scientific community. Although a number of micro- and nanodevices (e.g., drug carriers, sensors, and artificial cells) have been developed in the last decades, engineering communication at the micro/nanoscale is a recent emergent topic. In fact, most of the studies in this research area have been published within the last 10 years. Inspired by nature─where information is exchanged by means of molecules─the development of chemical communication strategies holds wide implications as it may provide breakthroughs in many areas including nanotechnology, artificial cell research, biomedicine, biotechnology, and ICT. Published examples rely on nanotechnology and synthetic biology for the creation of micro- and nanodevices that can communicate. Communication enables the construction of new complex systems capable of performing advanced coordinated tasks that go beyond those carried out by individual entities. In addition, the possibility to communicate between synthetic and living systems can further advance our understanding of biochemical processes and provide completely new tailored therapeutic and diagnostic strategies, ways to tune cellular behavior, and new biotechnological tools. In this Account, we summarize advances by our laboratories (and others) in the engineering of chemical communication of micro- and nanoparticles. This Account is structured to provide researchers from different fields with general strategies and common ground for the rational design of future communication networks at the micro/nanoscale. First, we cover the basis of and describe enabling technologies to engineer particles with communication capabilities. Next, we rationalize general models of chemical communication. These models vary from simple linear communication (transmission of information between two points) to more complex pathways such as interactive communication and multicomponent communication (involving several entities). Using illustrative experimental designs, we demonstrate the realization of these models which involve communication not only between engineered micro/nanoparticles but also between particles and living systems. Finally, we discuss the current state of the topic and the future challenges to be addressed.</p

    Compartmentalized Intracellular Click Chemistry with Biodegradable Polymersomes

    Get PDF
    Polymersome nanoreactors that can be employed as artificial organelles have gained much interest over the past decades. Such systems often include biological catalysts (i.e., enzymes) so that they can undertake chemical reactions in cellulo. Examples of nanoreactor artificial organelles that acquire metal catalysts in their structure are limited, and their application in living cells remains fairly restricted. In part, this shortfall is due to difficulties associated with constructing systems that maintain their stability in vitro, let alone the toxicity they impose on cells. This study demonstrates a biodegradable and biocompatible polymersome nanoreactor platform, which can be applied as an artificial organelle in living cells. The ability of the artificial organelles to covalently and non-covalently incorporate tris(triazolylmethyl)amine-Cu(I) complexes in their membrane is shown. Such artificial organelles are capable of effectively catalyzing a copper-catalyzed azide-alkyne cycloaddition intracellularly, without compromising the cells’ integrity. The platform represents a step forward in the application of polymersome-based nanoreactors as artificial organelles

    Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation

    Get PDF
    Nanomotors have been extensively explored for various applications in nanomedicine, especially in cargo transportation. Motile properties enable them to deliver pharmaceutical ingredients more efficiently to the targeted site. However, it still remains a challenge to design motor systems that are therapeutically active and can also be effectively traced when taken up by cells. Here, we designed a nanomotor with integrated fluorescence and therapeutic potential based on biodegradable polymersomes equipped with aggregation-induced emission (AIE) agents. The AIE segments provided the polymersomes with autofluorescence, facilitating the visualization of cell uptake. Furthermore, the membrane structure enabled the reshaping of the AIE polymersomes into asymmetric, peanut-shaped polymersomes. Upon laser irradiation, these peanut polymersomes not only displayed fluorescence, but also produced reactive oxygen species (ROS). Because of their specific shape, the ROS gradient induced motility in these particles. As ROS is also used for cancer cell treatment, the peanut polymersomes not only acted as delivery vehicles but also as therapeutic agents. As an integrated platform, these peanut polymersomes therefore represent an interesting delivery system with biomedical potential.</p

    Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation

    Get PDF
    Nanomotors have been extensively explored for various applications in nanomedicine, especially in cargo transportation. Motile properties enable them to deliver pharmaceutical ingredients more efficiently to the targeted site. However, it still remains a challenge to design motor systems that are therapeutically active and can also be effectively traced when taken up by cells. Here, we designed a nanomotor with integrated fluorescence and therapeutic potential based on biodegradable polymersomes equipped with aggregation-induced emission (AIE) agents. The AIE segments provided the polymersomes with autofluorescence, facilitating the visualization of cell uptake. Furthermore, the membrane structure enabled the reshaping of the AIE polymersomes into asymmetric, peanut-shaped polymersomes. Upon laser irradiation, these peanut polymersomes not only displayed fluorescence, but also produced reactive oxygen species (ROS). Because of their specific shape, the ROS gradient induced motility in these particles. As ROS is also used for cancer cell treatment, the peanut polymersomes not only acted as delivery vehicles but also as therapeutic agents. As an integrated platform, these peanut polymersomes therefore represent an interesting delivery system with biomedical potential.</p

    Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles

    Get PDF
    Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.</p

    Artificial Antigen-Presenting Cell Topology Dictates T Cell Activation

    Get PDF
    Contains fulltext : 283270.pdf (Publisher’s version ) (Open Access

    Facile synthesis of rapamycin-loaded PEG-b-PLA nanoparticles and their application in immunotherapy

    Get PDF
    Poly(ethylene glycol)-block-poly(lactide) (PEG-b-PLA) micro- and nanoparticles (NPs) have been intensively investigated for applications in biomedicine, due to their inherent biocompatibility and biodegradability, which allows them to be used as sustained release systems. Current methods for preparing PEG-b-PLA NPs typically require two different steps that include polymer synthesis and NP assembly, with the necessary intermediate polymer purification and the use of a variety of organic solvents in the process. In order to facilitate the biomedical application of PEG-b-PLA NPs, it is of great interest to develop a strategy to formulate the NPs in a simplified manner. Here, we report a straightforward method to construct PEG-b-PLA NPs through a sequential two-step process without intermediate work-up, which involves synthesizing the polymer in a water-miscible organic solvent that is, N,N-dimethylformamide (DMF), followed by addition of water to the polymer solution. In this way, large NPs (~600 nm) were prepared. We comprehensively characterized the NPs using turbidity studies, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. We further demonstrated the ability of the NPs to encapsulate drugs, exemplified in the immunotherapeutic agent rapamycin, with relatively high encapsulation efficiency. In vitro drug release tests showed that rapamycin-encapsulating NPs had comparable sustained-release profiles at different pH conditions, highlighting the broad application window of our NP platform. Moreover, in vitro T cell suppression assays revealed that rapamycin-loaded NPs exhibited similar inhibitory performance to free rapamycin on CD8+ cells at all rapamycin concentrations and on CD4+ cells at high and intermediate rapamycin concentrations, while the performance of the NPs was superior on CD4+ at low rapamycin concentration. Overall, this work provides a route for the scalable synthesis of biocompatible PEG-b-PLA NPs, which can be extended to other polymeric NPs, with potential in biomedical applications such as immunotherapy.</p

    Development of Morphologically Discrete PEG–PDLLA Nanotubes for Precision Nanomedicine

    Get PDF
    Precise control over the morphological features of nanoparticles is an important requisite for their application in nanomedical research. Parameters such as size and shape have been identified as critical features for effective nanotherapeutic technologies due to their role in circulation, distribution, and internalization in vivo. Tubular PEG-PDLLA polymersomes (nanotubes) exhibit an interesting morphology with potential for immunotherapeutics, as the elongated shape can affect cell-particle interactions. Developing methodologies that permit control over the precise form of such nanotubes is important for their biomedical implementation due to the stringent physicochemical constraints for efficacious performance. Through careful control over the engineering process, we demonstrate the generation of well-defined nanotubes based on polymersomes as small as 250 and 100 nm, which can be successfully shape transformed. The quality of the resulting nanostructures was established by physical characterization using AF4-MALS and cryo-TEM. Moreover, we show the successful loading of such nanotubes with model payloads (proteins and drugs). These findings provide a promising platform for implementation in biomedical applications in which discrete structure and functionality are essential features
    corecore