39 research outputs found

    Combating the effects of climatic change on forests by mitigation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.</p> <p>Results</p> <p>We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.</p> <p>Conclusions</p> <p>The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.</p

    Corporate philanthropy through the lens of ethical subjectivity

    Get PDF
    The dynamic organisational processes in businesses dilute the boundaries between the individual, organisational, and societal drivers of corporate philanthropy. This creates a complex framework in which charitable project selection occurs. Using the example of European tour operators, this study investigates the mechanisms through which companies invest in charitable projects in overseas destinations. Inextricably linked to this is the increasing contestation by local communities as to how they are able to engage effectively with tourism in order to realise the benefits tourism development can bring. This research furthers such debates by exploring the processes through which tour operators facilitate community development through charitable giving. Findings show, with no formal frameworks in existence, project selection depends upon emergent strategies that connect the professional with the personal, with trust being positioned as a central driver of these informal processes. Discretionary responsibilities are reworked through business leaders’ commitment to responsible business practises and the ethical subjectivity guiding these processes

    New directions for experiential learning

    No full text
    Publ. comme no 12, 1981 de la revue New directions for experiential learningBibliogr. à la fin des textesIndex: p. 99-10

    The Paragogy of Adaptation in an EFL Context

    No full text

    Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity

    No full text
    Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process-based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation-related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide-triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71-0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model.Water Resource
    corecore