5 research outputs found

    Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures

    Full text link
    The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often described by the fNLf_{NL} formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such models could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints on these models achievable with forthcoming data sets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale-dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions.Comment: 43 pages, 9 figures; references added, submitted to JCAP; typo corrected in Table 1, minor changes to the tex

    Predictions for Nongaussianity from Nonlocal Inflation

    Full text link
    In our previous work the nonlinearity parameter f_NL, which characterizes nongaussianity in the cosmic microwave background, was estimated for a class of inflationary models based on nonlocal field theory. These models include p-adic inflation and generically have the remarkable property that slow roll inflation can proceed even with an extremely steep potential. Previous calculations found that large nongaussianity is possible; however, the technical complications associated with studying perturbations in theories with infinitely many derivatives forced us to provide only an order of magnitude estimate for f_NL. We reconsider the problem of computing f_NL in nonlocal inflation models, showing that a particular choice of field basis and recent progress in cosmological perturbation theory makes an exact computation possible. We provide the first quantitatively accurate computation of the bispectrum in nonlocal inflation, confirming our previous claim that it can be observably large. We show that the shape of the bispectrum in this class of models makes it observationally distinguishable from Dirac-Born-Infeld inflation models.Comment: 26 pages, 5 figures; references added, sign convention for f_NL clarified, minor correction

    Observing the Evolution of the Universe

    No full text
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages

    The origin of the universe as revealed through the polarization of the cosmic microwave background

    No full text
    corecore