26 research outputs found

    Taiwanese Dermatological Association consensus for the management of atopic dermatitis

    Get PDF
    AbstractBackground/ObjectiveThis report describes the 2014 consensus of the Taiwanese Dermatological Association (TDA) regarding the treatment of atopic dermatitis (AD). The TDA consensus is distributed to practices throughout Taiwan to provide recommendations for therapeutic approaches for AD patients to improve their quality of life.MethodsThe information in the consensus was agreed upon by a panel of national experts at TDA AD consensus meetings held on March 16, May 4, and June 29, 2014. The consensus was in part based on the 2013 Asia–Pacific AD guidelines and the guidelines of the American Academy of Dermatology, with modification to reflect the clinical practice in Taiwan.ResultsThe amendments were drafted after scientific discussions focused on the quality of evidence, risk, and benefits; all the consensus contents were voted on by the participating dermatologists, with approval by at least 75% for inclusion.ConclusionThe consensus provides a comprehensive overview of treatment for AD, with some local and cultural considerations for practitioners in Taiwan, especially the use of wet dressings/wraps, systemic immunomodulatory agents, and complementary therapies

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Evaluation of Proteasome Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, and it has a worse prognosis than non-small cell lung cancer. The pathomechanism of IPF is not fully understood, but it has been suggested that repeated microinjuries of epithelial cells induce a wound healing response, during which fibroblasts differentiate into myofibroblasts. These activated myofibroblasts express α smooth muscle actin and release extracellular matrix to promote matrix deposition and tissue remodeling. Under physiological conditions, the remodeling process stops once wound healing is complete. However, in the lungs of IPF patients, myofibroblasts re-main active and deposit excess extracellular matrix. This leads to the destruction of alveolar tissue, the loss of lung elastic recoil, and a rapid decrease in lung function. Some evidence has indicated that proteasomal inhibition combats fibrosis by inhibiting the expressions of extracellular matrix proteins and metalloproteinases. However, the mechanisms by which proteasome inhibitors may protect against fibrosis are not known. This review summarizes the current research on proteasome inhibitors for pulmonary fibrosis, and provides a reference for whether proteasome inhibitors have the potential to become new drugs for the treatment of pulmonary fibrosis

    Proteasome Inhibitors Decrease the Viability of Pulmonary Arterial Smooth Muscle Cells by Restoring Mitofusin-2 Expression under Hypoxic Conditions

    No full text
    Pulmonary hypertension (PH) is a severe progressive disease, and the uncontrolled proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the main causes. Mitofusin-2 (MFN2) profoundly inhibits cell growth and proliferation in a variety of tumor cell lines and rat vascular smooth muscle cells. Down-regulation of MFN2 is known to contribute to PH. Proteasome inhibitors have been shown to inhibit the proliferation of PASMCs; however, there is no study on the regulation of proteasome inhibitors through MFN-2 in the proliferation of PASMCs, a main pathophysiology of PH. In this study, PASMCs were exposed to hypoxic conditions and the expression of MFN2 and cleaved-PARP1 were detected by Western blotting. The effects of hypoxia and proteasome inhibitors on the cell viability of PASMC cells were detected by CCK8 assay. The results indicated that hypoxia increases the viability and reduces the expression of MFN2 in a PASMCs model. MFN2 overexpression inhibits the hypoxia-induced proliferation of PASMCs. In addition, proteasome inhibitors, bortezomib and marizomib, restored the decreased expression of MFN2 under hypoxic conditions, inhibited hypoxia-induced proliferation and induced the expression of cleaved-PARP1. These results suggest that bortezomib and marizomib have the potential to improve the hypoxia-induced proliferation of PASMCs by restoring MFN2 expression

    Unique Pulmonary Hypertension in Young Children: A Case Series Study

    No full text
    Pediatric pulmonary hypertension (PH) has a similar clinical presentation to the adult disease but is associated with several additional disorders and challenges that require a specific approach for their fulminant course. With improved care for premature infants, various forms of pulmonary vascular disease have been found in children that did not previously exist. Pediatric PH can begin in utero, resulting in pulmonary vascularity growth abnormalities that may persist into adulthood. Here, we retrospectively reviewed several unique pediatric PH cases from 2000 to 2020 at Kaohsiung Medical University Hospital, Taiwan, a tertiary teaching hospital. Their comorbidities varied and included surfactant dysfunction, bronchopulmonary dysplasia, premature closure of the ductus arteriosus, high levels of renin and aldosterone, and Swyer–James–Macleod syndrome. Their clinical profiles, radiological characteristics, echocardiography, pulmonary angiogram, and therapeutic regimens were recorded. Further, because the underlying causes of pediatric PH were complex and markedly different according to age, adult PH classification may not be applicable to pediatric PH in all settings. We also classified these cases using different systems, including the Panama classification and the Sixth World Symposium on PH, and compared their advantages and disadvantages

    Highly Sensitive Ammonia Sensor with Organic Vertical Nanojunctions for Noninvasive Detection of Hepatic Injury

    No full text
    We successfully demonstrate the first solid-state sensor to have reliable responses to breath ammonia of rat. For thioacetamide (TAA)-induced hepatopathy rats, we observe that the proposed sensor can detect liver that undergoes acute–moderate hepatopathy with a <i>p</i>-value less than 0.05. The proposed sensor is an organic diode with vertical nanojunctions produced by using low-cost colloidal lithography. Its simple structure and low production cost facilitates the development of point-of-care technology. We also anticipate that the study is a starting point for investigating sophisticated breath-ammonia-related disease models
    corecore