26,479 research outputs found
Two-measured variable method for wall interference assessment/correction
An iterative method for wall interference assessment and/or correction is presented for transonic flow conditions in wind tunnels equipped with two component velocity measurements on a single interface. The iterative method does not require modeling of the test article and tunnel wall boundary conditions. Analytical proof for the convergence and stability of the iterative method is shown in the subsonic flow regime. The numerical solutions are given for both 2-D and axisymmetrical cases at transonic speeds with the application of global Mach number correction
Systemic Risk and the Refinancing Ratchet Effect
The confluence of three trends in the U.S. residential housing market-rising home prices, declining interest rates, and near-frictionless refinancing opportunities-led to vastly increased systemic risk in the financial system. Individually, each of these trends is benign, but when they occur simultaneously, as they did over the past decade, they impose an unintentional synchronization of homeowner leverage. This synchronization, coupled with the indivisibility of residential real estate that prevents homeowners from deleveraging when property values decline and homeowner equity deteriorates, conspire to create a "ratchet" effect in which homeowner leverage is maintained during good times without the ability to decrease leverage during bad times. If refinancing-facilitated homeowner-equity extraction is sufficiently widespread-as it was during the years leading up to the peak of the U.S. residential real-estate market-the inadvertent coordination of leverage during a market rise implies higher correlation of defaults during a market drop. To measure the systemic impact of this ratchet effect, we simulate the U.S. housing market with and without equity extractions, and estimate the losses absorbed by mortgage lenders by valuing the embedded put-option in non-recourse mortgages. Our simulations generate loss estimates of 280 billion in the absence of equity extractions.Risk; Financial Crisis; Household Finance; Real Estate; Subprime
Consolidation in Unsaturated Soils with Body Forces
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Optimal Capacitive Load Matching of Micro Electret Power Generators
This paper presents a model of micro-electret power generators. This model uses two capacitors with fixed charge density and variable area to model the actual micro electret power generator. Simulations of power output with capacitive loads and resistive loads are presented. The power output decreases as the load capacitance increases while it increases as the resistive load increases. To verify the model and simulation results, power output generation experiments are performed and the results confirm the simulation. To collect useful energy from the power generator, a small capacitive load, rather than a resistive load, is required
Numerical methods for analyzing electromagnetic scattering
Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield
Numerical methods for analyzing electromagnetic scattering
Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide
Similarity transformations approach for a generalized Fokker-Planck equation
By using similarity transformations approach, the exact propagator for a
generalized one-dimensional Fokker-Planck equation, with linear drift force and
space-time dependent diffusion coefficient, is obtained. The method is simple
and enables us to recover and generalize special cases studied through the Lie
algebraic approach and the Green function technique.Comment: 8 pages, no figure
Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material
The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters
- …