2,102 research outputs found
Experimental Studies of Low-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures
By applying a magnetic field perpendicular to GaAs/AlGaAs two-dimensional
electron systems, we study the low-field Landau quantization when the thermal
damping is reduced with decreasing the temperature. Magneto-oscillations
following Shubnikov-de Haas (SdH) formula are observed even when their
amplitudes are so large that the deviation to such a formula is expected. Our
experimental results show the importance of the positive magneto-resistance to
the extension of SdH formula under the damping induced by the disorder.Comment: 9 pages, 3 figure
A retrospective study on the course and outcome of fetal ventriculomegaly
AbstractObjectiveTo evaluate the outcomes associated with fetal ventriculomegaly.Materials and methodsReports of women who underwent ultrasound scanning between 18 and 36 weeks of gestation during the period from January 1, 2000, to December 31, 2010, were reviewed. According to the defined severity of ventriculomegaly of affected fetuses, the women were divided into the following groups: (1) mild ventriculomegaly (Group A); (2) moderate ventriculomegaly (Group B); and (3) severe ventriculomegaly (Group C). The women were classified into the “gray zone” group if the fetal lateral ventricle measured between 7 mm and <10 mm. All cases were followed up with additional ultrasound scans. Postnatal information was obtained from the computer database or the medical charts.ResultsA total of 41 cases were recruited for this analysis. Four (9.8%) cases had an abnormal karyotype. Twelve women (29.3%) opted for termination of pregnancy. Of the 29 women who delivered, 56.1% (N = 23) were from Group A, 14.6% (N = 6) were from Group B, and none was from Group C. All children in Group A had normal neurological development. Three children in Group B had normal neurological development, whereas the other three had neurologic deficits. A total of 432 cases were classified into the “gray zone” group. Of these cases, 2.8% (N = 12) progressed to ventriculomegaly.ConclusionCases of isolated and mild ventriculomegaly without additional structural anomalies or chromosomal aberrations had good prognoses. However, the parents of fetuses with moderate or severe ventriculomegaly should be counseled regarding related risks. If the ventricular size of the fetus falls within the “gray zone”, at least one additional exam in the third trimester should be performed, for early detection of ventriculomegaly and other related abnormalities. It is important to make the parents of these fetuses aware of these risks, from a medico-legal point of view
Evidence for formation of multi-quantum dots in hydrogenated graphene.
We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device. The resulting Coulomb blockade diamonds shown in the color scale plot together with the number of Coulomb peaks exhibit the characteristics of the so-called 'stochastic Coulomb blockade'. A possible explanation for the formation of the multi-quantum dots, which is not observed in pristine graphene to date, was attributed to the impurities and defects unintentionally decorated on a single-layer graphene flake which was not treated with the thermal annealing process. Graphene multi-quantum dots developed around impurities and defect sites during the hydrogen plasma exposure process.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Serum repressing efflux pump CDR1 in Candida albicans
BACKGROUND: In the past decades, the prevalence of candidemia has increased significantly and drug resistance has also become a pressing problem. Overexpression of CDR1, an efflux pump, has been proposed as a major mechanism contributing to the drug resistance in Candida albicans. It has been demonstrated that biological fluids such as human serum can have profound effects on antifungal pharmacodynamics. The aim of this study is to understand the effects of serum in drug susceptibility via monitoring the activity of CDR1 promoter of C. albicans. RESULTS: The wild-type C. albicans cells (SC5314) but not the cdr1/cdr1 mutant cells became more susceptible to the antifungal drug when the medium contained serum. To understand the regulation of CDR1 in the presence of serum, we have constructed CDR1 promoter-Renilla luciferase (CDR1p-RLUC) reporter to monitor the activity of the CDR1 promoter in C. albicans. As expected, the expression of CDR1p-RLUC was induced by miconazole. Surprisingly, it was repressed by serum. Consistently, the level of CDR1 mRNA was also reduced in the presence of serum but not N-acetyl-D-glucosamine, a known inducer for germ tube formation. CONCLUSION: Our finding that the expression of CDR1 is repressed by serum raises the question as to how does CDR1 contribute to the drug resistance in C. albicans causing candidemia. This also suggests that it is important to re-assess the prediction of in vivo therapeutic outcome of candidemia based on the results of standard in vitro antifungal susceptibility testing, conducted in the absence of serum
Switch activation of PI-PLC downstream signals in activated macrophages with wortmannin
AbstractPhosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2) has been known to serve as a substrate for phosphatidylinositol 3-kinase (PI3K) and phosphoinositide-specific phospholipase C (PI-PLC), which can produce PtdIns(3,4,5)P3 and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol (DAG), respectively. In this study, we elucidated the role of PI-PLC during the LPS-activated mouse macrophages RAW264.7 treated with PI3K inhibitor wortmannin. First, wortmannin treatment enhanced Ins(1,4,5)P3 production and iNOS expression in LPS-activated macrophages. Inhibition of PI3K by p85 siRNA also showed an enhancement of iNOS expression. On the other hand, overexpression of PI3K by ras-p110 expression plasmid significantly decreased iNOS expression in LPS-activated macrophages. In addition, overexpression of wild-type or dominant-negative Akt expression plasmid did not affect the iNOS expression in LPS-activated macrophages. Second, treatment of PI-PLC inhibitor U73122 reversed the enhancement of iNOS expression, the increase of phosphorylation level of ERK, JNK and p38, and the increase of AP-1-dependent gene expression in wortmannin-treated and LPS-activated macrophages. However, NF-κB activity determined by EMSA assay and reporter plasmid assay did not change during LPS-activated macrophages with or without wortmannin. We propose that the inhibition of PI3K by wortmannin in mouse macrophages enhances the PI-PLC downstream signals, and subsequently increases the LPS induction of iNOS expression independently of Akt pathway
Bmi-1 Regulates Snail Expression and Promotes Metastasis Ability in Head and Neck Squamous Cancer-Derived ALDH1 Positive Cells
Recent studies suggest that ALDH1 is a putative marker for HNSCC-derived cancer
stem cells. However, the regulation mechanisms that maintain the stemness and metastatic capability
of HNSCC-ALDH1+ cells remain unclear. Initially, HNSCC-ALDH1+ cells from HNSCC patient showed
cancer stemness properties, and high expression of Bmi1 and Snail. Functionally, tumorigenic properties
of HNSCC-ALDH1+ cells could be downregulated by knockdown of Bmi-1. Overexpression of Bmi-1 altered in
expression property ALDH1− cells to that of ALDH1+ cells. Furthermore, knockdown of Bmi-1 enhanced
the radiosensitivity of radiation-treated HNSCC-ALDH1+ cells. Moreover, overexpression of Bmi-1 in
HNSCC-ALDH1− cells increased tumor volume and number of pulmonary metastatic lesions by xenotransplant
assay. Importantly, knock-down of Bmi1 in HNSCC-ALDH1+ cells significantly decreased distant metastases in
the lungs. Clinically, coexpression of Bmi-1/Snail/ALDH1 predicted the worst prognosis in HNSCC
patients. Collectively, our data suggested that Bmi-1 plays a key role in
regulating Snail expression and cancer stemness properties of HNSCC-ALDH1+ cells
Impact of esophageal motility on microbiome alterations in symptomatic gastroesophageal reflux disease patients with negative endoscopy: Exploring the role of ineffective esophageal motility and contraction reserve
BACKGROUND/AIMS: Ineffective esophageal motility (IEM) is common in patients with gastroesophageal reflux disease (GERD) and can be associated with poor esophageal contraction reserve on multiple rapid swallows. Alterations in the esophageal microbiome have been reported in GERD, but the relationship to presence or absence of contraction reserve in IEM patients has not been evaluated. We aim to investigate whether contraction reserve influences esophageal microbiome alterations in patients with GERD and IEM.
METHODS: We prospectively enrolled GERD patients with normal endoscopy and evaluated esophageal motility and contraction reserve with multiple rapid swallows during high-resolution manometry. The esophageal mucosa was biopsied for DNA extraction and 16S ribosomal RNA gene V3-V4 (Illumina)/full-length (Pacbio) amplicon sequencing analysis.
RESULTS: Among the 56 recruited patients, 20 had normal motility (NM), 19 had IEM with contraction reserve (IEM-R), and 17 had IEM without contraction reserve (IEM-NR). Esophageal microbiome analysis showed a significant decrease in microbial richness in patients with IEM-NR when compared to NM. The beta diversity revealed different microbiome profiles between patients with NM or IEM-R and IEM-NR (
CONCLUSIONS: In symptomatic GERD patients with normal endoscopic findings, the esophageal microbiome differs based on contraction reserve among IEM. Absent contraction reserve appears to alter the physiology and microbiota of the esophagus
Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells
AbstractBackgroundGlioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, the subpopulation of GBM cells was recently discovered to share similar phenotypes with neural stem cells. These cancer stem cells (CSCs) promote the potency of tumor initiation. As a result, targeting of glioma stem cells has become the dominant way of improving the therapeutic outcome against GBM and extending the life span of patients. Among the biomarkers of CSCs, CD-133 (prominin-1) has been known to effectively isolate CSCs from cancer population, including GBM; however, the underlying mechanism of how stemness genes manipulate CSC-associated phenotypes, such as tumor initiation and relapse, is still unclear.MethodsTumorigenicity, drug resistance and embryonic stem cell markers were examined in primary CD133-positive (CD133+) GBM cells and CD133+ subpopulation. Stemness signature of CD133+ GBM cells was identified using microarray analysis. Stem cell potency, tumorigenicity and drug resistance were also tested in differential expression of SOX2 in GBM cells.ResultsIn this study, high tumorigenic and drug resistance was noticed in primary CD-133+ GBM cells; meanwhile, plenty of embryonic stem cell markers were also elevated in the CD-133+ subpopulation. Using microarray analysis, we identified SOX2 as the most enriched gene among the stemness signature in CD133+ GBM cells. Overexpression of SOX2 consistently enhanced the stem cell potency in the GBM cell lines, whereas knockdown of SOX2 dramatically withdrew CD133 expression in CD133+ GBM cells. Additionally, we silenced SOX2 expression using RNAi system, which abrogated the ability of tumor initiation as well as drug resistance of CD133+ GBM cells, suggesting that SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells.ConclusionSOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers
- …