983 research outputs found
Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity
Although expanded polyglutamine (polyQ) repeats are inherently toxic, causing at least nine neurodegenerative diseases, the protein context determines which neurons are affected. The polyQ expansion that causes Huntington's disease (HD) is in the first exon (HDx-1) of huntingtin (Htt). However, other parts of the protein, including the 17 N-terminal amino acids and two proline (polyP) repeat domains, regulate the toxicity of mutant Htt. The role of the P-rich domain that is flanked by the polyP domains has not been explored. Using highly specific intracellular antibodies (intrabodies), we tested various epitopes for their roles in HDx-1 toxicity, aggregation, localization, and turnover. Three domains in the P-rich region (PRR) of HDx-1 are defined by intrabodies: MW7 binds the two polyP domains, and Happ1 and Happ3, two new intrabodies, bind the unique, P-rich epitope located between the two polyP epitopes. We find that the PRR-binding intrabodies, as well as VL12.3, which binds the N-terminal 17 aa, decrease the toxicity and aggregation of HDx-1, but they do so by different mechanisms. The PRR-binding intrabodies have no effect on Htt localization, but they cause a significant increase in the turnover rate of mutant Htt, which VL12.3 does not change. In contrast, expression of VL12.3 increases nuclear Htt. We propose that the PRR of mutant Htt regulates its stability, and that compromising this pathogenic epitope by intrabody binding represents a novel therapeutic strategy for treating HD. We also note that intrabody binding represents a powerful tool for determining the function of protein epitopes in living cells
Recommended from our members
Isoform-specific induction of a retinoid-responsive antigen after biolistic transfection of chimaeric retinoic acid/thyroid hormone receptors into a regenerating limb
Retinoic acid (RA) induces secretory differentiation in the wound epidermis of a regenerating amphibian limb. We investigated the role of individual RA receptor (RAR) types in the newt wound epidermis by introducing chimaeric RA/thyroid hormone (T3) receptors (chi alpha 1 and chi delta 1) that can be activated by T3. A biolistic particle delivery system was employed to transfect cells in the wound epidermis of a regenerating limb and approximately 10% of the cells in targeted surface areas expressed marker genes. Both chi alpha 1 and chi delta 1 were comparable in their ability to stimulate transcription of a synthetic reporter construct through a RA response element after activation with T3 in situ. This activation was also comparable to that obtained by the endogenous complement of RARs in the RA-treated, transfected wound epidermis. The RA-inducible WE3 antigen, a marker for secretory differentiation, which distinguishes the wound epidermis from normal skin (Tassava, R. A., Johnson-Wint, B. and Gross, J. 1986, J. Exp. Zool. 239, 229–240), was used to assess the functional role of chi alpha 1 and chi delta 1. Chimaeric receptors were transfected with an alkaline phosphatase marker gene, activated with T3, and the expression of both the marker and WE3 was analyzed by double-label immunofluorescence. Newt limbs transfected with chi delta 1 showed many double-labelled cells dependent on the presence of T3, whereas contralateral limbs transfected with an alkaline phosphatase marker lacking chimaeric receptor sequences did not
IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance
// Amanda L. Rinkenbaugh 1,2 , Patricia C. Cogswell 2,3 , Barbara Calamini 4 , Denise E. Dunn 4 , Anders I. Persson 5,6 , William A. Weiss 5,6 , Donald C. Lo 4 and Albert S. Baldwin 2 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA 2 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA 3 Chordoma Foundation, Durham, NC, USA 4 Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA 5 Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA 6 Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA Correspondence to: Albert Baldwin, email: // Keywords : NF-κB, glioblastoma, cancer stem cells, tumor-initiating cells Received : March 14, 2016 Accepted : September 24, 2016 Published : October 06, 2016 Abstract Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma
Privacy-Preserving Methods for Sharing Financial Risk Exposures
Unlike other industries in which intellectual property is patentable, the
financial industry relies on trade secrecy to protect its business processes
and methods, which can obscure critical financial risk exposures from
regulators and the public. We develop methods for sharing and aggregating such
risk exposures that protect the privacy of all parties involved and without the
need for a trusted third party. Our approach employs secure multi-party
computation techniques from cryptography in which multiple parties are able to
compute joint functions without revealing their individual inputs. In our
framework, individual financial institutions evaluate a protocol on their
proprietary data which cannot be inverted, leading to secure computations of
real-valued statistics such a concentration indexes, pairwise correlations, and
other single- and multi-point statistics. The proposed protocols are
computationally tractable on realistic sample sizes. Potential financial
applications include: the construction of privacy-preserving real-time indexes
of bank capital and leverage ratios; the monitoring of delegated portfolio
investments; financial audits; and the publication of new indexes of
proprietary trading strategies
Structure–activity relationship study of EphB3 receptor tyrosine kinase inhibitors
A structure–activity relationship study for a 2-chloroanilide derivative of pyrazolo[1,5-a]pyridine revealed that increased EphB3 kinase inhibitory activity could be accomplished by retaining the 2-chloroanilide and introducing a phenyl or small electron donating substituents to the 5-position of the pyrazolo[1,5-a]pyridine. In addition, replacement of the pyrazolo[1,5-a]pyridine with imidazo[1,2-a]pyridine was well tolerated and resulted in enhanced mouse liver microsome stability. The structure–activity relationship for EphB3 inhibition of both heterocyclic series was similar. Kinase inhibitory activity was also demonstrated for representative analogs in cell culture. An analog (32, LDN-211904) was also profiled for inhibitory activity against a panel of 288 kinases and found to be quite selective for tyrosine kinases. Overall, these studies provide useful molecular probes for examining the in vitro, cellular and potentially in vivo kinase-dependent function of EphB3 receptor
Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery
There is a compelling need for new therapeutic strategies for glioblastoma multiforme (GBM). Preclinical target and therapeutic discovery for GBMs is primarily conducted using cell lines grown in serum-containing media, such as U-87 MG, which do not reflect the gene expression profiles of tumors found in GBM patients. To address this lack of representative models, we sought to develop a panel of patient-derived GBM models and characterize their genomic features, using RNA sequencing (RNA-seq) and growth characteristics, both when grown as neurospheres in culture, and grown orthotopically as xenografts in mice. When we compared these with commonly used GBM cell lines in the Cancer Cell Line Encyclopedia (CCLE), we found these patient-derived models to have greater diversity in gene expression and to better correspond to GBMs directly sequenced from patient tumor samples. We also evaluated the potential of these models for targeted therapy, by using the genomic characterization to identify small molecules that inhibit the growth of distinct subsets of GBMs, paving the way for precision medicines for GBM
- …