11 research outputs found

    Reducing Powdery Mildew in High-tunnel Tomato Production in Oregon with Ultra Violet-C Lighting

    Get PDF
    Widespread outbreaks of tomato powdery mildew (Leveillula taurica and Oidium neolycopersici) are problematic in fresh market tomato (Solanum lycopersicum) crops in western Oregon, USA. In western Oregon, fresh market tomatoes are frequently grown in greenhouses or high tunnels where conditions can promote diseases such as powdery mildew. Heightened concerns about worker safety limit the pesticides available for use in enclosed systems. We studied the efficacy of ultraviolet-C (UV-C) light applications under high-tunnel conditions compared with a standard fungicide program. Plants treated with UV-C had zero incidence of powdery mildew on all sample dates in the first trial. In trial 2, disease incidence was lower on UV-C treated plants than both grower standard and nontreated control early in the study while disease severity remained lower in UV-C than nontreated control and similar to grower standard treatment. Additional research is needed to optimize UV-C treatment intervals to minimize negative effects on plant growth and maximize powdery mildew control

    Multi-scale environmental filters and niche partitioning govern the distributions of riparian vegetation guilds

    Get PDF
    Across landscapes, riparian plant communities assemble under varying levels of disturbance, environmental stress, and resource availability, leading to the development of distinct riparian life-history guilds over evolutionary timescales. Identifying the environmental filters that exert selective pressures on specific riparian vegetation guilds is a critical step in setting baseline expectations for how riparian vegetation may respond to environmental conditions anticipated under future global change scenarios. In this study, we ask: (1) What riparian plant guilds exist across the interior Columbia and upper Missouri River basins? (2) What environmental filters shape riparian guild distributions? (3) How does resource partitioning among guilds influence guild distributions and co-occurrence? Woody species composition was measured at 703 stream reaches and each species\u27 morphological and functional attributes were extracted from a database in four categories: (1) life form, (2) persistence and growth, (3) reproduction, and (4) resource use. We clustered species into guilds by morphological characteristics and attributes related to environmental tolerances, modeling these guilds\u27 distributions as a function of environmental filters-regional climate, watershed hydrogeomorphic characteristics, and stream channel form- and guild coexistence. We identified five guilds: (1) a tall, deeply rooted, long-lived, evergreen tree guild, (2) a xeric, disturbance tolerant shrub guild, (3) a hydrophytic, thicket-forming shrub guild, (4) a low-statured, shadetolerant, understory shrub guild, and (5) a flood tolerant, mesoriparian shrub guild. Guilds were most strongly discriminated by species\u27 rooting depth, canopy height and potential to resprout and grow following biomass-removing disturbance (e.g., flooding, fire). Hydro-climatic variables, including precipitation, watershed area, water table depth, and channel form attributes reflective of hydrologic regime, were predictors of guilds whose life history strategies had affinity or aversion to flooding, drought, and fluvial disturbance. Biotic interactions excluded guilds with divergent life history strategies and/or allowed for the co-occurrence of guilds that partition resources differently in the same environment. We conclude that the riparian guild framework provides insight into how disturbance and bioclimatic gradients shape riparian functional plant diversity across heterogeneous landscapes. Multiple environmental filters should be considered when the riparian response guild framework is to be used as a decisionsupport tool framework across large spatial extents. Copyright: © 2015 Hough-Snee et al

    Climate-Ready Landscape Plants: Garden Roses Trialed at Reduced Irrigation Frequency in Utah, USA

    Get PDF
    Increased urban and suburban populations in the arid western United States have resulted in more water demand; however, water availability in the region has become limited because of inadequate precipitation. Recent droughts have led to restrictions on irrigating landscape plants. Garden rose (Rosa ×hybrida) is commonly used as flowering plants in residential landscapes, but its drought tolerance has not been widely studied. The objective of this study was to determine the impact of reduced irrigation frequency on visual quality, plant growth, and physiology of five garden rose cultivars, including ChewPatout (Oso Easy® Urban Legend®), Meibenbino (Petite Knock Out®), MEIRIFTDAY (Oso Easy® Double Pink), Overedclimb (Cherry Frost™), and Radbeauty (Sitting Pretty™). Twenty-four plants of each rose cultivar were established in a trial plot at Utah Agricultural Experiment Station Greenville Research Farm (North Logan, UT, USA) in Summer 2021. Plants were randomly assigned to one of three deficit irrigation treatments for which irrigation frequencies were calculated using 80% reference evapotranspiration (ETO) (high), 50% ETO (medium), and 20% ETO (low). The total volumes of irrigation water applied to each plant were 345.6, 172.8, and 43.2 L for the high, medium, and low irrigation frequencies, respectively, during the deficit irrigation trial from 12 May to 30 Sep 2022. Root zones were wetted more frequently as irrigation frequency increased from low to high irrigation frequencies. Decreased irrigation frequency increased the number of visibly wilted and damaged leaves on all rose cultivars. However, only ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited a reduction in overall appearance under decreased irrigation frequency. The relative growth indices of both ‘Meibenbino’ and ‘MEIRIFTDAY’ decreased by 6%, whereas the dry weights of their leaves decreased by 37% and 36%, respectively, as irrigation decreased from high to low frequencies. Roses in this study appeared to decrease stomatal conductance up to 51% when irrigation decreased from high to low frequencies, or when air temperature increased. ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited unacceptable overall appearance, growth reduction, and higher leaf–air temperature differences, and they were less tolerant to reduced irrigation. Although the ‘Radbeauty’ maintained plant growth under the reduced irrigation frequency, the large leaf size led to a more visibly wilted appearance and the potential for heat stress, thus impairing visual quality. ‘ChewPatout’ and ‘Overedclimb’ were most tolerant to deficit irrigation at 20% ETO and maintained plant growth with acceptable visual quality and lower leaf temperatures when they received one irrigation during the growing season

    Climate-ready Landscape Plants: Garden Roses Trialed at Reduced Irrigation Frequency in Utah, USA

    Get PDF
    Increased urban and suburban populations in the arid western United States have resulted in more water demand; however, water availability in the region has become limited because of inadequate precipitation. Recent droughts have led to restrictions on irrigating landscape plants. Garden rose (Rosa ×hybrida) is commonly used as flowering plants in residential landscapes, but its drought tolerance has not been widely studied. The objective of this study was to determine the impact of reduced irrigation frequency on visual quality, plant growth, and physiology of five garden rose cultivars, including ChewPatout (Oso Easy® Urban Legend®), Meibenbino (Petite Knock Out®), MEIRIFTDAY (Oso Easy® Double Pink), Overedclimb (Cherry Frost™), and Radbeauty (Sitting Pretty™). Twenty-four plants of each rose cultivar were established in a trial plot at Utah Agricultural Experiment Station Greenville Research Farm (North Logan, UT, USA) in Summer 2021. Plants were randomly assigned to one of three deficit irrigation treatments for which irrigation frequencies were calculated using 80% reference evapotranspiration (ETO) (high), 50% ETO (medium), and 20% ETO (low). The total volumes of irrigation water applied to each plant were 345.6, 172.8, and 43.2 L for the high, medium, and low irrigation frequencies, respectively, during the deficit irrigation trial from 12 May to 30 Sep 2022. Root zones were wetted more frequently as irrigation frequency increased from low to high irrigation frequencies. Decreased irrigation frequency increased the number of visibly wilted and damaged leaves on all rose cultivars. However, only ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited a reduction in overall appearance under decreased irrigation frequency. The relative growth indices of both ‘Meibenbino’ and ‘MEIRIFTDAY’ decreased by 6%, whereas the dry weights of their leaves decreased by 37% and 36%, respectively, as irrigation decreased from high to low frequencies. Roses in this study appeared to decrease stomatal conductance up to 51% when irrigation decreased from high to low frequencies, or when air temperature increased. ‘Meibenbino’ and ‘MEIRIFTDAY’ exhibited unacceptable overall appearance, growth reduction, and higher leaf–air temperature differences, and they were less tolerant to reduced irrigation. Although the ‘Radbeauty’ maintained plant growth under the reduced irrigation frequency, the large leaf size led to a more visibly wilted appearance and the potential for heat stress, thus impairing visual quality. ‘ChewPatout’ and ‘Overedclimb’ were most tolerant to deficit irrigation at 20% ETO and maintained plant growth with acceptable visual quality and lower leaf temperatures when they received one irrigation during the growing season

    Ecophysiology as a tool for evaluating invasive-plant based bioenergies: physiological and ecological case-studies of Arundo donax and Elaeagnus angustifolia

    No full text
    Thesis (Ph.D.)--University of Washington, 2012In recent years, environmental and social pressures have fostered the development of biomass based energies. Development of `ideal' biomass feedstocks has led to characterizations of physiological traits that are similar to many of the physiological traits that typify number of invasive grasses. This has led to controversy about the sustainable implementation of invasive-grass based bioenergy feedstocks. While the debate has continued for much of the past decade, little work has been published quantifying the arguments on either side of the controversy. The work presented herein addresses the lack of evidence regarding the potential for increasing plant invasions by utilizing known invasive plants as biomass feedstocks. The first three chapters deal specifically with the invasive grass species Arundo donax. These chapters describe experiments in which A. donax was grown under a variety of treatments which have been predicted as potential environmental alterations associated with global climate change such as: carbon dioxide enrichment, drought, resource limitations, and soil salinization. The effects of these treatments were quantified at the whole-plant and leaf-level scales. Results show thatA. donax is able to persist and grow in environmental conditions that typically limit growth of most crops and some native plant species. Furthermore, its growth was found to be improved under elevated carbon dioxide. These findings suggest that it is unlikely A. donax will be constrained by the agricultural setting, and therefore cultivating it will disperse it to new environments and will likely lead to future invasions. Alternatively, this dissertation addresses the potential for bioenergy markets to help reduce the spread of invasive plants by partnering with on-going ecological restoration. In the last chapter of the dissertation, titled Bioenergy that Supports Ecological Restoration, a case-study experiment in central Washington State reveals how wood-waste for ecological restoration of Russian olive (Elaeagnus angustifolia) can be converted into bioenergy. These findings suggest that a restoration costs can be offset from the sale of Russian olive wood for bioenergy. Yet, the quality of the Russian olive wood is divergent from the typical biomass resources which will limit its incorporation into the bioenergy market. The Russian olive findings present the first supply and demand analysis of invasive plant biomass for bioenergy

    Does plant performance under stress explain divergent life history strategies? The effects of flooding and nutrient stress on two wetland sedges

    No full text
    <p>This is an author's copy of the following manuscript for teaching and outreach purposes only: Hough-Snee, N., L.L. Nackley, S-H. Kim and K. Ewing. 2014. Does plant performance under stress explain divergent life history strategies? The effects of flooding and nutrient stress on two wetland sedges. Aquatic Botany. DOI: 10.1016/j.aquabot.2014.03.001</p
    corecore