2,086 research outputs found
Infant cortex responds to other humans from shortly after birth
A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions
Recommended from our members
The relationship between hallucinations and FDG-PET in dementia with Lewy bodies
Visual hallucinations are common in dementia with Lewy bodies (DLB), although their etiology is unclear. This study aimed to investigate the relationship between severity and frequency of hallucinations and regional brain glucose metabolism. We performed brain FDG-PET scanning on 28 subjects with DLB (mean age 76). The neuropsychiatric index (NPI) was used to assess frequency and severity of hallucinations. We used the SPM package to investigate voxelwise correlations between NPI hallucination score (severity x frequency) and FDG uptake relative to the cerebellum. There was a bilateral medial occipital region where reduced FDG was associated with increased hallucination severity and frequency. We conclude that the reduced occipital metabolism frequently seen in DLB is associated with frequency and severity of visual hallucinations. Further studies are required to investigate whether this is the result of deficits in top-down or bottom-up visual processing pathways.This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG- 1207-13105). Support was also provided by the NIHR Newcastle Biomedical Research Centre and Lewy-body Dementia Biomedical Research Unit based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, and also the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health
Opportunities for topical antimicrobial therapy: permeation of canine skin by fusidic acid
BACKGROUND: Staphylococcal infection of the canine epidermis and hair follicle is amongst the commonest reasons for antimicrobial prescribing in small animal veterinary practice. Topical therapy with fusidic acid (FA) is an attractive alternative to systemic therapy based on low minimum inhibitory concentrations (MICs, commonly <0.03 mg/l) documented in canine pathogenic staphylococci, including strains of MRSA and MRSP (methicillin-resistant Staphylococcus aureus and S. pseudintermedius). However, permeation of canine skin by FA has not been evaluated in detail. This study aimed to define the degree and extent of FA permeation in canine skin in vitro from two sites with different hair follicle density following application of a licensed ophthalmic formulation that shares the same vehicle as an FA-betamethasone combination product approved for dermal application in dogs. Topical FA application was modelled using skin held in Franz-type diffusion cells. Concentrations of FA in surface swabs, receptor fluid, and transverse skin sections of defined anatomical depth were determined using high-performance liquid chromatography and ultraviolet (HPLC-UV) analysis. RESULTS: The majority of FA was recovered by surface swabs after 24 h, as expected (mean ± SEM: 76.0 ± 17.0%). FA was detected within 424/470 (90%) groups of serial sections of transversely cryotomed skin containing follicular infundibula, but never in 48/48 (100%) groups of sections containing only deeper follicular structures, nor in receptor fluid, suggesting that FA does not permeate beyond the infundibulum. The FA concentration (mean ± SEM) in the most superficial 240 μm of skin was 2000 ± 815 μg/g. CONCLUSIONS: Topically applied FA can greatly exceed MICs for canine pathogenic staphylococci at the most common sites of infection. Topical FA therapy should now be evaluated using available formulations in vivo as an alternative to systemic therapy for canine superficial bacterial folliculitis.Peer reviewedFinal Published versio
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies
Pandemic influenza has the epidemic potential to kill millions of people.
While various preventive measures exist (i.a., vaccination and school
closures), deciding on strategies that lead to their most effective and
efficient use remains challenging. To this end, individual-based
epidemiological models are essential to assist decision makers in determining
the best strategy to curb epidemic spread. However, individual-based models are
computationally intensive and it is therefore pivotal to identify the optimal
strategy using a minimal amount of model evaluations. Additionally, as
epidemiological modeling experiments need to be planned, a computational budget
needs to be specified a priori. Consequently, we present a new sampling
technique to optimize the evaluation of preventive strategies using fixed
budget best-arm identification algorithms. We use epidemiological modeling
theory to derive knowledge about the reward distribution which we exploit using
Bayesian best-arm identification algorithms (i.e., Top-two Thompson sampling
and BayesGap). We evaluate these algorithms in a realistic experimental setting
and demonstrate that it is possible to identify the optimal strategy using only
a limited number of model evaluations, i.e., 2-to-3 times faster compared to
the uniform sampling method, the predominant technique used for epidemiological
decision making in the literature. Finally, we contribute and evaluate a
statistic for Top-two Thompson sampling to inform the decision makers about the
confidence of an arm recommendation
An Open-System Quantum Simulator with Trapped Ions
The control of quantum systems is of fundamental scientific interest and
promises powerful applications and technologies. Impressive progress has been
achieved in isolating the systems from the environment and coherently
controlling their dynamics, as demonstrated by the creation and manipulation of
entanglement in various physical systems. However, for open quantum systems,
engineering the dynamics of many particles by a controlled coupling to an
environment remains largely unexplored. Here we report the first realization of
a toolbox for simulating an open quantum system with up to five qubits. Using a
quantum computing architecture with trapped ions, we combine multi-qubit gates
with optical pumping to implement coherent operations and dissipative
processes. We illustrate this engineering by the dissipative preparation of
entangled states, the simulation of coherent many-body spin interactions and
the quantum non-demolition measurement of multi-qubit observables. By adding
controlled dissipation to coherent operations, this work offers novel prospects
for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see
publication. Manuscript + Supplementary Informatio
Speech rhythm: a metaphor?
Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and that it is this analogical process which allows speech to be matched to external rhythms
Climate Change and invasibility of the Antarctic benthos
Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics
The simulation of low-temperature properties of many-body systems remains one
of the major challenges in theoretical and experimental quantum information
science. We present, and demonstrate experimentally, a universal cooling method
which is applicable to any physical system that can be simulated by a quantum
computer. This method allows us to distill and eliminate hot components of
quantum states, i.e., a quantum Maxwell's demon. The experimental
implementation is realized with a quantum-optical network, and the results are
in full agreement with theoretical predictions (with fidelity higher than
0.978). These results open a new path for simulating low-temperature properties
of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet
Many interesting problems in physics, chemistry, and computer science are
equivalent to problems of interacting spins. However, most of these problems
require computational resources that are out of reach by classical computers. A
promising solution to overcome this challenge is to exploit the laws of quantum
mechanics to perform simulation. Several "analog" quantum simulations of
interacting spin systems have been realized experimentally. However, relying on
adiabatic techniques, these simulations are limited to preparing ground states
only. Here we report the first experimental results on a "digital" quantum
simulation on thermal states; we simulated a three-spin frustrated magnet, a
building block of spin ice, with an NMR quantum information processor, and we
are able to explore the phase diagram of the system at any simulated
temperature and external field. These results serve as a guide for identifying
the challenges for performing quantum simulation on physical systems at finite
temperatures, and pave the way towards large scale experimental simulations of
open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary
material
- …