20,979 research outputs found

    A Surprise Occurrence in Acoustic Bottom Backscatter Measurements Conducted in the Eastern Bering Sea

    Get PDF
    Acoustic backscatter measurements at different frequencies were made in the eastern Bering Sea in August 2006 from the NOAA Ship Fairweather. The measurements consisted of approximately 2,250 nm of trackline acoustic backscatter data from a 100 kHz RESON model 8111; 2,250 nm of trackline acoustic backscatter data from a 40 kHz Reson model 8160; 750 nm of trackline acoustic backscatter data from a 455 kHz Klein model 5410; and 750 nm of trackline acoustic backscatter data from a 180 kHz pre-production Klein model 7180. The two Klein systems were each towed SW-NE once along the same specified 750 nm of tracklines. The two RESON systems were each operated twice SW-NE and once NE-SW along the same tracklines as the Klein systems. The acoustic backscatter was typically what might be expected from a flat, featureless expanse of fine grained sediments. However, there was a chance encounter with an embedded community of gastropods that was documented both with bottom grab samples and video footage of the seabed. The presence of the embedded community of gastropods drastically changed the level and angle dependence of the backscatter. This paper presents a comparative analysis of the backscatter properties of the gastropod community that were observed at 40 kHz, 100 kHz, 180 kHz and 455 kHz

    X-ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State

    Full text link
    We report spectral and variability analysis of two quiescent low mass X-ray binaries (X5 and X7, previously detected with the ROSAT HRI) in a Chandra ACIS-I observation of the globular cluster 47 Tuc. X5 demonstrates sharp eclipses with an 8.666+-0.01 hr period, as well as dips showing an increased N_H column. The thermal spectra of X5 and X7 are well-modeled by unmagnetized hydrogen atmospheres of hot neutron stars. No hard power law component is required. A possible edge or absorption feature is identified near 0.64 keV, perhaps an OV edge from a hot wind. Spectral fits imply that X7 is significantly more massive than the canonical 1.4 \Msun neutron star mass, with M>1.8 \Msun for a radius range of 9-14 km, while X5's spectrum is consistent with a neutron star of mass 1.4 \Msun for the same radius range. Alternatively, if much of the X-ray luminosity is due to continuing accretion onto the neutron star surface, the feature may be the 0.87 keV rest-frame absorption complex (O VIII & other metal lines) intrinsic to the neutron star atmosphere, and a mass of 1.4 \Msun for X7 may be allowed.Comment: 16 pages, 7 figures, accepted by Ap

    Acoustic positioning and tracking in Portsmouth Harbour, New Hampshire

    Get PDF
    Portsmouth Harbor, New Hampshire, is frequently used as a testing area for multibeam and sidescan sonars, and is the location of numerous ground-truthing studies. Having the ability to accurately position underwater sensors is an important aspect of this type of work. However, underwater positioning in Portsmouth Harbor is challenging. It is relatively shallow, approximately one kilometer wide with depths of less than 25 meters. There is mixing between fresh river water and seawater, which is intensified by high currents and strong tides. This causes a very complicated spatial and temporal sound speed structure. Solutions that use the time-of-arrival of an acoustic pulse to estimate range will require very precise knowledge of the travel paths of the signal in order to separate out issues of multipath arrivals. An alternative solution is to use the phase measurements between closely spaced hydrophones to measure the bearing of an acoustic pinger. By using two bearing measurement devices that are widely separated, the intersection of the two bearings can be used to position the pinger. The advantage of this approach is that the sound speed only needs to be known at the location of the phase measurements. Both time-of-arrival and phase difference systems may encounter difficulties arising from horizontal refraction due to spatially varying sound speed. To ascertain which solution would be optimal in Portsmouth Harbor, the time-of-arrival and phase measurement approaches are being examined individually. Initial field tests have been conducted using a 40 kHz signal to look at bearing accuracy. Using hydrophones that are spaced 2/3 wavelengths apart, the bearing accuracy was found to be 1.25deg for angles up to 20deg from broadside with signal to noise ratios (SNR) greater than 15 dB. The results from the closely spaced hydrophones were used to resolve phase ambiguities, allowing finer bearing measurements to be made between hydrophones spaced 5 wavelengths apart. The fi- ne bearing measurements resulted in a bearing accuracy of 0.3deg for angles up to 20deg from broadside with SNR greater than 15 dB. Field tests planned for summer 2007 will include a more detailed investigation of how the environmental influences affect each of the measurement types including range, signal to noise ratio, currents, and sound speed structure

    Quantum Cryptography Approaching the Classical Limit

    Get PDF
    We consider the security of continuous-variable quantum cryptography as we approach the classical-limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10,000 times the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore, incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.Comment: Letter (4 pages) followed by appendix (4 pages). Updated from published version with some minor correction

    Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission

    Full text link
    We have studied terahertz (THz) emission from arsenic-ion implanted GaAs both experimentally and using a three-dimensional carrier dynamics simulation. A uniform density of vacancies was formed over the optical absorption depth of bulk GaAs samples by performing multi-energy implantations of arsenic ions (1 and 2.4MeV) and subsequent thermal annealing. In a series of THz emission experiments the frequency of peak THz power was found to increase significantly from 1.4 to 2.2THz when the ion implantation dose was increased from 10^13 to 10^16 cm-3. We used a semi-classical Monte-Carlo simulation of ultra-fast carrier dynamics to reproduce and explain these results. The effect of the ion-induced damage was included in the simulation by considering carrier scattering at neutral and charged impurities, as well as carrier trapping at defect sites. Higher vacancy concentrations and shorter carrier trapping times both contributed to shorter simulated THz pulses, the latter being more important over experimentally realistic parameter ranges.Comment: 6 pages, 7 figure

    ‘Mad, bad, or possessed’? Perceptions of Self-Harm and Mental Illness in Evangelical Christian Communities

    Get PDF
    Mental illness within evangelical Christian communities is frequently stigmatised, with many attributing it exclusively to demonic possession, lack of faith, personal sin, or other negative spiritual influences. This study explores perceptions of self-harm in the context of evangelical Christian faith communities using the novel qualitative story completion task. A convenience sample of 101 UK-based evangelical Christians completed a third-person fictional story stem featuring a devout female Christian who self-harms. A contextualist informed thematic analysis was carried out focusing on perceptions of cause, cure, and treatment. Most stories positioned spiritual causes of mental illness (that is, demonic possession or personal sin) as harmful to the individual by rendering individuals as stigmatised objects or as socially displaced. The stories also provided insight into negative perceptions of females experiencing mental illness within evangelical communities. The stories suggested that these views often led to stigma and shame, which ultimately exacerbated illness and led to reduced help-seeking. Conversely, stories depicting the integration of relational care alongside spiritual resources frequently led to recovery. That the stories represented the need for relational support, within a spiritually syntonic framework, for recovery from mental illness highlights the limitations of a dichotomised approach to pastoral care. Methodologically, the study demonstrates the usefulness of a seldom-used tool within the pastoral psychology context – the story completion task – for accessing sociocultural discourses and wider representations surrounding stigmatised topics or populations

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Azulene-A Bright Core for Sensing and Imaging

    Get PDF
    Azulene is a hydrocarbon isomer of naphthalene known for its unusual colour and fluorescence properties. Through the harnessing of these properties, the literature has been enriched with a series of chemical sensors and dosimeters with distinct colorimetric and fluorescence responses. This review focuses specifically on the latter of these phenomena. The review is subdivided into two sections. Section one discusses turn-on fluorescent sensors employing azulene, for which the literature is dominated by examples of the unusual phenomenon of azulene protonation-dependent fluorescence. Section two focuses on fluorescent azulenes that have been used in the context of biological sensing and imaging. To aid the reader, the azulene skeleton is highlighted in blue in each compound.</p

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches
    corecore