374 research outputs found

    Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators

    Full text link
    [EN] This paper presents a methodology to evaluate transversal competences in the context of the subject “Design and application of industrial equipment” in the Master's Degree in Industrial Engineering at Universitat Politècnica de València (Spain). The competency-based education implies several activities, such as a project-based learning that must be eventually defended in public by students in groups. Evidence of learning is collected based on a well-defined system of rubrics and indicators, which are known in advance by students. We have observed that the use of such techniques improves the students learning on the contents of the subject, allows to acquire the transversal competences related to the analysis and problem solving, and enhances the ability to understand concepts intuitively. Moreover, results clearly show a positive influence on the use of such tools for improving the professional and ethical commitment to the issues raised.Llopis-Albert, C.; Rubio, F. (2021). Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators. Multidisciplinary Journal for Education, Social and Technological Sciences. 8(1):30-44. https://doi.org/10.4995/muse.2021.15244OJS304481Eberle, B. (1996). Scamper: Games for Imagination Development. Prufrock Press Inc. ISBN 978-1-882664-24-5.Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. (2019a). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. (2020a). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research 112, 561-566. https://doi.org/10.1016/j.jbusres.2019.10.050UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfValero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. (2019a). Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    Application of Learning Analytics to Improve Higher Education

    Full text link
    [EN] In the digital era, the teacher assumes very diverse roles among which are to be an adviser, a generator of multimedia content, and more recently a data analyst. Big data analytics may play a major role in Higher Education for all the agents involved, the teachers and educators, the students themselves and the managers or heads of university centers. This paper applies learning analytics to the subject of Theory of Machines and Strength of Materials of the bachelor's degree in Chemical Engineering at Universitat Politècnica de València (Spain). The aim of analyzing the available information is to improve teachers’ actions and communication, to enhance resource efficiency, to assess classroom procedures, the achievement of transversal competences, the student typology and their results, or the attitudes and commitment they acquire with the subject taught. Results show the existence of niches with competitive advantages, improvements in the quality and performance of the teaching-learning experience.Llopis-Albert, C.; Rubio, F. (2021). Application of Learning Analytics to Improve Higher Education. Multidisciplinary Journal for Education, Social and Technological Sciences. 8(2):1-18. https://doi.org/10.4995/muse.2021.16287OJS11882Dollár, A., Steif, P. S. (2012). Web-based Statics Course with Learning Dashboard for Instructors. Computers and Advanced Technology in Education. https://doi.org/10.2316/P.2012.774-025Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. In International Journal of Technology Enhanced Learning, 4, (5-6), 304-317. https://doi.org/10.1504/IJTEL.2012.051816Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68 (7), 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867Llopis-Albert, C., Rubio, F., Valero, F. (2019). Fuzzy-set qualitative comparative analysis applied to the design of a network flow of automated guided vehicles for improving business productivity. Journal of Business Research, 101, 737-742. https://doi.org/10.1016/j.jbusres.2018.12.076Llopis-Albert, C., Rubio, F., Valero, F., Liao, H., Zeng, S. (2019a). Stochastic inverse finite element modeling for characterization of heterogeneous material properties. Materials Research Express, 6(11), 115806. https://doi.org/10.1088/2053-1591/ab4c72Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J.L., Zamora-Ortiz, P., Escarabajal, R.J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. https://doi.org/10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Zamora-Ortiz, P., Escarabajal, R.J., Pulloquinga, J.L. (2020a). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113-127. https://doi.org/10.4995/muse.2020.13352Llopis-Albert, C., Rubio, F. (2021). Methodology to evaluate transversal competences in the master's degree in industrial engineering based on a system of rubrics and indicators. Multidisciplinary Journal for Education, Social and Technological Sciences, 8(1), 30-44. https://doi.org/10.4995/muse.2021.15244Llopis-Albert C., Rubio F., Valero F. (2021a). Modelling an industrial robot and its impact on productivity. Mathematics, 9(7):769. https://doi.org/10.3390/math9070769Llopis-Albert, C., Rubio, F., Valero, F. (2021). Impact of digital transformation on the automotive industry. Technological Forecasting and Social Change, 162, 120343. https://doi.org/10.1016/j.techfore.2020.120343Llopis-Albert, C., Palacios-Marqués, D., Simón-Moya, V. (2021). Fuzzy set qualitative comparative analysis (fsQCA) applied to the adaptation of the automobile industry to meet the emission standards of climate change policies via the deployment of electric vehicles (EVs). Technological Forecasting and Social Change, 169, 120843. https://doi.org/10.1016/j.techfore.2021.120843Llopis-Albert, C., Rubio, F., Valle-Falcones, L.M., Grima-Olmedo, C. (2020). Use of technical computing systems in the context of engineering problems. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(2), 84-99. https://doi.org/10.4995/muse.2020.14283OEI (2019). Learning analytics and education. Revista iberoamericana de educación. Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI). Monográficos, volumen 80(1), 217 pages. https://rieoei.org/RIE/issue/view/Learning%20Analytics/vol%2080%281%29Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 10 pages. Article ID 931048. https://doi.org/10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008Rubio, F., Llopis-Albert, C. (2019). Viability of using wind turbines for electricity generation in electric vehicles. Multidisciplinary Journal for Education, Social and Technological Sciences, 6(1), 115-126. https://doi.org/10.4995/muse.2019.11743Rubio, F., Valero, F., & Llopis-Albert, C. (2019a). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596Rubio, F., Llopis-Albert, C., Valero, F., Besa, A.J. (2020). Sustainability and optimization in the automotive sector for adaptation to government vehicle pollutant emission regulations. Journal of Business Research 112, 561-566. https://doi.org/10.1016/j.jbusres.2019.10.050UPV, 2020. Proyecto institucional competencias transversales. Universitat Politècnica de València (UPV). Valencia. Spain. https://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfValera Á., Valero F., Vallés M., Besa A., Mata V., Llopis-Albert C. (2021). Navigation of autonomous light vehicles using an optimal trajectory planning algorithm. Sustainability. 2021; 13(3):1233. https://doi.org/10.3390/su13031233Valero, F., Rubio, F., Llopis-Albert, C., Cuadrado, J.I. (2017). Influence of the Friction Coefficient on the Trajectory Performance for a Car-Like Robot. Mathematical Problems in Engineering, 9 pages. Article ID 4562647. https://doi.org/10.1155/2017/4562647Valero, F., Rubio, F., Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407Valero, F., Rubio, F., Besa, A.J. (2019a). Efficient trajectory of a car-like mobile robot. Industrial Robot: the international journal of robotics research and application, 46(2), 211-222. https://doi.org/10.1108/IR-10-2018-021

    A powerful technique for combining complex path models with latent variables

    Full text link
    [EN] This article presents the use of Structural Equation Modeling (SEM) as a powerful technique for combining complex path models with latent variables. A case study is introduced together the estimation technique, the measurement scales, the hypothesis needed to relate the variables and the problems concerning the assessment and improvement of the model fit. The theoretical framework allows analyzing the relationships among the variables, which provides effective strategies in the decision-making process and problem solving.Llopis Albert, C.; Palacios Marqués, D. (2016). A powerful technique for combining complex path models with latent variables. International Journal on Advances in Education Research. 3(3):73-83. http://hdl.handle.net/10251/108469S73833

    Inverse problems in engineering

    Full text link
    [EN] An inverse problem in engineering is the process of obtaining from a set of observations the causal factors that produce those data. Contrary to forward problems, an inverse problem starts with the results and subsequently calculates the causes. They are widely applied in many engineering fields since they allows obtaining parameters that cannot be directly observed. Additionally, they play a major role in uncertainty, reliability and risk assessment. This paper discusses an uncertainty assessment about the environmental impacts of future scenarios of sustainable groundwater pumping strategies on the quantitative status of an aquifer.Llopis Albert, C.; Palacios Marqués, D. (2016). Inverse problems in engineering. International Journal on Advances in Education Research. 3(2):61-67. http://hdl.handle.net/10251/108475S61673

    Applications of fuzzy logic for determining the driving forces in collaborative research contracts

    Full text link
    This study examines various factors (human capital, experience, attraction capacity, and profile) of technology centers that, according to the literature, affect the performance of science-industry R&D partnerships. The measure of performance is the income that R&D contracts generate divided by the number of clients that the research center has. The data sample considers technology centers operating in the region of Catalonia that act under the TECNIO umbrella brand. The analysis uses fsQCA methodology, which allows identifying a combination of causes that lead to the outcome. Results support the argument that different causal paths explain profitable R&D contracts.Berbegal-Mirabent, J.; Llopis Albert, C. (2016). Applications of fuzzy logic for determining the driving forces in collaborative research contracts. Journal of Business Research. 69(4):1446-1451. doi:10.1016/j.jbusres.2015.10.123S1446145169

    Optimization approaches for robot trajectory planning

    Get PDF
    [EN] The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof), the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences. 5(1):1-16. doi:10.4995/muse.2018.9867SWORD1165

    Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs)

    Full text link
    [EN] The designing of an efficient warehouse management system is a key factor to improve productivity and reduce costs. The use of Automated Guided Vehicles (AVGs) in Material Handling Systems (MHS) and Flexible Manufacturing Systems (FMS) can help to that purpose. This paper is intended to provide insight regarding the technical and financial suitability of the implementation of a fleet of AGVs. This is carried out by means of a fuzzy set/qualitative comparative analysis (fsQCA) by measuring the level of satisfaction of managerial decision makers.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs). Multidisciplinary Journal for Education, Social and Technological Sciences. 5(2):97-105. doi:10.4995/muse.2018.10722SWORD9710552Berbegal-Mirabent, J.; Llopis-Albert, C. (2015). Applications of Fuzzy Logic for Determining the Driving Forces in Collaborative Research Contracts. J. Bus. Res., 69 (4), 1446-1451. https://doi.org/10.1016/j.jbusres.2015.10.123Biçer, I., Seifert, R.W., (2017). Optimal Dynamic Order Scheduling under Capacity Constraints Given Demand-Forecast Evolution. Production and Operations Management 26(12), 2266-2286. https://doi.org/10.1111/poms.12759Fazlollahtabar, H., Saidi-Mehrabad, M. (2015). Autonomous Guided Vehicles: Methods and Models for Optimal Path Planning. Springer. https://doi.org/10.1007/978-3-319-14747-5 ISBN 978-3-319-14747-5.Gourgand, M., Sun, X.C., Tchernev, N., 1995. Choice of the guide path layout for an AGV based material handling system. Emerging Technologies and Factory Automation, 1995. ETFA '95, Proceedings., 1995 INRIA/IEEE Symposium on. https://doi.org/10.1109/ETFA.1995.496688Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research 68, 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027Llopis-Albert, C., Palacios-Marqués, D. (2016). Applied Mathematical Problems in Engineering. Multidisciplinary Journal for Education 3(2), 1-14. https://doi.org/10.4995/muse.2016.6679Llopis-Albert, C., Merigó, J.M., Xu, Y., Liao, H. (2017). Application of Fuzzy Set/Qualitative Comparative Analysis to Public Participation Projects in Support of the EU Water Framework Directive. Water Environment Research, 89.Mendel, J. M.; Korjani, M. M. (2012). Charles Ragin's Fuzzy Set Qualitative Comparative Analysis (fsQCA) Used for Linguistic Summarizations. Inf. Sci., 202, 1-23. https://doi.org/10.1016/j.ins.2012.02.039Mendel, J. M., Korjani, M. M. (2013). Theoretical Aspects of Fuzzy Set Qualitative Comparative Analysis (fsQCA). Inf. Sci., 237, 137-161. https://doi.org/10.1016/j.ins.2013.02.048Meyer, A. D., Tsui, A.S. and Hinings, C.R. (1993). Configurational approaches to organizational analysis. Academy of Management Journal, 36(6), 1175-1195.Quine, W. V. (1952). The problem of simplifying truth functions. The American Mathematical Monthly, 59(8), 521-531. https://doi.org/10.1080/00029890.1952.11988183Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research 225, 1-11. https://doi.org/10.1016/j.ejor.2012.08.015Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press. https://doi.org/10.7208/chicago/9780226702797.001.0001Sarker, B.R., Gurav, S.S. (2005). Route planning for automated guided vehicles in a manufacturing facility. International Journal of Production Research 43(21), 4659-4683. https://doi.org/10.1080/0020754050014080

    Analysis of the Use of a Wind Turbine as an Energy Recovery Device in Transport Systems

    Full text link
    [EN] A wind turbine can act as an energy recovery device (ERS) in a comparable way to brakes (regenerative braking). When the velocity of a vehicle changes, the amount of energy related to it also changes. When its velocity decreases, the energy tends to dissipate. Over time, this dissipated energy has been ignored. For example, during the braking process, the kinetic energy of the vehicle was converted into heat. In recent years, society¿s greater awareness of climate change, pollution, and environmental issues has led to a great deal of interest in developing energy recovery systems. It allows the recovery of kinetic energy from braking (KERS), resulting in consumption reductions (efficiency gains) of up to 45%. The usefulness of installing a wind turbine as an energy recovery device is analysed, evaluating the savings that can be achieved with its two possible working modes: as an energy recovery device and as a system for utilizing aerodynamic force. The wind turbine has a horizontal axis and a diameter of 50 cm and is installed on the front of a vehicle. This vehicle will undergo three particular driving schemes, which will operate under different experimental conditions and operational parameters characterized by speeds, accelerations, stops, and driving time. The results clearly show the advantages of using the proposed technology.Rubio Montoya, FJ.; Llopis-Albert, C. (2021). Analysis of the Use of a Wind Turbine as an Energy Recovery Device in Transport Systems. Mathematics. 9(18):1-15. https://doi.org/10.3390/math9182265S11591

    Best practices in syllabus design and course planning applied to mechanical engineering subjects

    Full text link
    [EN] The syllabus of a subject, that is part of the curriculum of a bachelor s or master's degree, must provide the student with information about all the fundamental aspects of the subject. It is a piece of written document or multimedia file encompassing all topics and concepts that will be covered in a certain subject. The objective of the syllabus is to put the subject and the information related to it in context by means of clear, organized, concise and summarized style. It should not be limited only to the subject matter. Instead, it is advisable to provide basic course information such as the number of credits; course content; transversal competences, skills and attitudes that are relevant for access to work and further learning; faculty staff; assessment and evaluation elements; calendar; venues, and facilities location; lesson plans and bibliography. Moreover, information about the activities to be carried out and whether they are done individually or in groups. Another important point is the evaluation of students and how to assess their achievements in terms of the level of acquisition of knowledge and skills planned in the subject. It helps students to meet the desired subject objectives and to motivate them. In short, it will lay the foundations so that at least contents, methods and techniques of the discipline that supports the subject can be taught and so that students can acquire the knowledge and competences committed.Rubio, F.; Llopis-Albert, C.; Zeng, S. (2022). Best practices in syllabus design and course planning applied to mechanical engineering subjects. Multidisciplinary Journal for Education, Social and Technological Sciences. 9(2):123-137. https://doi.org/10.4995/muse.2022.182301231379

    La pareja: Proyecto de exposición

    Full text link
    [ES] El presente trabajo es un proyecto de exposición con el tema de la pareja como eje fundamental y la pintura, la escultura y la fotografía como medios. El proyecto expositivo analiza la relación de pareja desde el punto de vista de la compatibilidad, la complicidad, la convivencia, la cotidianeidad, la complementariedad, la compañía, los sentimientos, el romanticismo, la atracción, la pasión y los conflictos entre dos personas adultas. El principal objetivo de este proyecto es de tipo práctico: producir una serie de obras dentro de un proyecto personal de exposición, con la finalidad de elaborar un material susceptible de ser presentado a espacios o galerías. Tenemos la intención de realizar una exposición individual, de una serie de pinturas, esculturas y fotografías relacionadas con el tema de la relación de pareja.[EN] The present work is an exhibition project with the theme of the couple as the fundamental axis and painting, sculpture and photography as media. The exhibition project analyzes the couple's relationship from the point of view of compatibility, complicity, coexistence, daily life, complementarity, company, feelings, romanticism, attraction, passion and conflicts between two adults. . The main objective of this project is of a practical nature: to produce a series of works within a personal exhibition project, in order to elaborate a material that can be presented to spaces or galleries. We intend to make a solo exhibition of a series of paintings, sculptures and photographs related to the theme of the couple relationship.Almor Llopis, C. (2021). La pareja: Proyecto de exposición. Universitat Politècnica de València. http://hdl.handle.net/10251/170920TFG
    corecore