5 research outputs found

    Proteomic and mechanistic analysis of Auxin Response Factors in the Arabidopsis embryo

    Get PDF
    Auxin is a phytohormone that is crucial for many aspects of plant development. The processes in which this hormone has been implicated span from embryo development to flower transition, defense, tropic responses, and many other processes during plant life. A key question in auxin biology is how this molecule is able to elicit such diverse responses. Auxin regulates the transcriptional activation or repression of genes through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. In my studies I focus in the ARF transcription factors as a likely source of variation in output specificity. We consider three levels at which ARFs differ. First, ARFs differ in their ability to interact with different Aux/IAA (antagonistic family of transcription factors), or to form homo- or heterodimers. Second, ARFs assemble into different protein complexes, transcription factors interact with other transcriptional regulators or other proteins to form transcription complexes. These, when different, may contribute to different functions of ARF complexes. Thirdly, ARFs bind to and regulate different target genes. My work offers a plausible explanation how specific auxin responses are generated and through which genes the developmental responses to auxin are generated.</p

    Green beginnings - Pattern formation during plant embryogenesis

    No full text
    Embryogenesis in plants transforms the zygote into a relatively simple structure, the seedling, which contains all tissues and organs that later form the mature plant body. Despite a profound diversity in cell division patterns among plant species, embryogenesis yields remarkably homologous seedling architectures. In this review, we describe the formative events during plant embryogenesis and discuss the molecular mechanisms that regulate these processes, focusing on Arabidopsis. Even though only a relatively small number of factors are known that regulate each patterning step, a picture emerges where locally acting transcription factors and intercellular signaling contribute to the specification and spatio-temporal coordination of the various cell types in the embryo. Notably, several patterning processes are controlled by the plant hormone auxin. Most regulators that were identified in Arabidopsis have orthologs in other sequenced plant genomes, and several of these are expressed in similar patterns. Therefore, it appears that robust conserved mechanisms may underlie pattern formation in plant embryo

    Imaging of phenotypes, gene expression, and protein localization during embryonic root formation in Arabidopsis.

    No full text
    Plants grow elaborate architectures by repeatedly initiating new organs post-embryonically. The competence to do so depends on the activity of meristems, stem cell niches located at the tips of shoot and root. These meristems are first specified early during embryogenesis. Therefore, important insight into the activity of factors that are central to the establishment of stem cell niches in plants can be gained from studying early embryogenesis. However, embryos are not directly accessible to microscopic observation since they are embedded within the seed, which is itself enveloped by the fruit. Here we describe a suite of methods for the analysis of mutant phenotypes, fluorescent reporter gene expression and protein localization in Arabidopsis embryos, and show how these methods can be used to visualize key factors in embryonic root formation

    A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family

    No full text
    The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant’s life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF) transcription factors and their interacting auxin/indole-3-acetic acid (Aux/IAA) transcriptional inhibitors. Auxin promotes the degradation of Aux/IAA proteins through the auxin receptor and hence releases the inhibition of ARF transcription factors. Although this generic mechanism is now well understood, it is still unclear how developmental specificity is generated and how individual gene family members of response components contribute to local auxin responses. We have established a collection of transcriptional reporters for the ARF gene family and used these to generate a map of expression during embryogenesis and in the primary root meristem. Our results demonstrate that transcriptional regulation of ARF genes generates a complex pattern of overlapping activities. Genetic analysis shows that functions of co-expressed ARFs converge on the same biological processes, but can act either antagonistically or synergistically. Importantly, the existence of an ‘ARF pre-pattern’ could explain how cell-type-specific auxin responses are generated. Furthermore, this resource can now be used to probe the functions of ARF in other auxin-dependent processes

    Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo

    Get PDF
    The cell types of the plant root are first specified early during embryogenesis and are maintained throughout plant life. Auxin plays an essential role in embryonic root initiation, in part through the action of the ARF5/MP transcription factor and its auxin-labile inhibitor IAA12/BDL. MP and BDL function in embryonic cells but promote auxin transport to adjacent extraembryonic suspensor cells, including the quiescent center precursor (hypophysis). Here we show that a cell-autonomous auxin response within this cell is required for root meristem initiation. ARF9 and redundant ARFs, and their inhibitor IAA10, act in suspensor cells to mediate hypophysis specification and, surprisingly, also to prevent transformation to embryo identity. ARF misexpression, and analysis of the short suspensor mutant, demonstrates that lineage-specific expression of these ARFs is required for normal embryo development. These results imply the existence of a prepattern for a cell-type-specific auxin response that underlies the auxin-dependent specification of embryonic cell type
    corecore