17 research outputs found

    Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus

    Get PDF
    A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.Fil: Llarrull, Leticia Irene. Universidad Nacional de Rosario; Argentina. University of Notre Dame; Estados Unidos. Universidad Nacional de Rosario; ArgentinaFil: Mobashery, Shahriar. University of Notre Dame-Indiana; Estados Unido

    Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution

    Get PDF
    The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.Fil: Meini, María Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry

    Get PDF
    A series of 4-[(triazolyl)methoxy]phenyl analogs of the phenoxyphenyl-substituted thiirane SB-3CT 1 was evaluated for its ability to inhibit gelatinases, members of the matrix metalloproteinase family of enzymes. The triazole segment of these inhibitors was assembled using the Meldal-Sharpless copper-catalyzed Huisgen dipolar cycloaddition of an azide and a terminal alkyne. While these triazole derivatives possessed fair activity as gelatinase inhibitors, an intermediate used in the dipolar cycloaddition, 4-(propargyloxy)phenyl derivative 2, showed very good activity (<50% inhibitory activity following a 3 h pre-incubation of 2 at a concentration of 3 μM) as an inhibitor of human matrix metalloproteinase-2.Fil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Chang, Mayland. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados Unido

    An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance

    Get PDF
    The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.Fil: Belluzo, Bruno Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Abriata, Luciano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. École Polytechnique Fédérale de Lausanne; SuizaFil: Giannini, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mihovilcevic, Damila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Dal Peraro, Matteo. École Polytechnique Fédérale de Lausanne; SuizaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    The reaction mechanism of metallo-beta-lactamases is tuned by the conformation of an active site mobile loop

    Get PDF
    Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.Fil: Palacios, Antonela Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mojica, María F.. Case Western Reserve University; Estados UnidosFil: Giannini, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Taracila, Magdalena A.. Case Western Reserve University; Estados Unidos. Louis Stokes Veterans Affairs Medical Center; Estados UnidosFil: Bethel, Christopher R.. Louis Stokes Veterans Affairs Medical Center; Estados UnidosFil: Alzari, Pedro M.. Institut Pasteur de Paris; FranciaFil: Otero, Lisandro Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Bonomo, Robert A.. Case Western Reserve University; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    How Allosteric Control of Staphylococcus aureus Penicillin-Binding Protein 2a Enables Methicillin-Resistance and Physiological Function

    Get PDF
    The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The highmolecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain - a remarkable 60 Å distant from the DD-transpeptidase active site - discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.Fil: Otero, Lisandro Horacio. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Rojas Altuve, Alzoray. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Llarrull, Leticia Irene. University of Notre Dame; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Carrasco López, Cesar. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Kumarasiri, Malika. University of Notre Dame; Estados UnidosFil: Lastochkin, Elena. University of Notre Dame; Estados UnidosFil: Fishovitz, Jennifer. University of Notre Dame; Estados UnidosFil: Dawley, Matthew. University of Notre Dame; Estados UnidosFil: Hesek, Dusan. University of Notre Dame; Estados UnidosFil: Lee, Mijoon. University of Notre Dame; Estados UnidosFil: Johnson, Jarrod W.. University of Notre Dame; Estados UnidosFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Chang, Mayland. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados UnidosFil: Hermoso, Juan A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; Españ

    Sintesis de fotosondas derivadas de ampicilina

    No full text
    The Gram-positive bacteria Staphylococcus aureus is the main cause of hospital- and community-associated infections. S. aureus is the most frequent cause of surgical, lower respiratory tract, and cardiovascular infections. In addition, it is the second most common cause of health-care associated pneumonia and of bloodstream infections.1,2,5 Methicillin-resistant S. aureus (MRSA) is a high priority concern in the world and in particular in Latin America, both in hospitals and in the community. MRSA has become the first cause of hospital-associated infections in Latin America, and there has been an increasing number of reports of community acquired MRSA infections. The acquisition of resistance to b-lactam antibiotics, generally concurrent with the acquisition of resistance to other antibacterial agents, represents a huge challenge for the prevention and treatment of S. aureus associated infections. Very few new antibacterial are in advanced stages of clinical evaluation for the treatment of bacterial infections, including MRSA. S. aureus presents two main mechanisms of resistance to b-lactam antibiotics: the expression of the PC1 b-lactamase, capable of hydrolyzing and inactivating the b-lactam antibiotics, and the acquisition of a PBP (PBP2a) with low affinity for b-lactam antibiotics, and which is hence not inhibited by them. S. aureus presents another important system that coordinates the response to antibiotics that inhibit the biosynthesis of the peptidoglycan: the VraSRT system. The three-component system VraSRT controls the peptidoglycan crosslinking process, and is activated by β-lactam and glycopeptide antibiotics. VraSRT has a critical role in glycopeptide-resistance. The VraSRT system is composed of three components: VraS and VraT are membrane proteins that could quickly detect stress in the cell wall and transmit the signal to the cell cytoplasm. The understanding of the signal transduction mechanism employed by the sensor proteins of the VraSRT system is of great interest because they are possible targets for the design of inhibitors that can be used in conjunction with antibiotics for the treatment of S. aureus infections. Photoaffinity labeling is a useful technique employed to study noncovalent interactions between protein-ligands and protein-protein complexes. A photoaffinity labeling reagent is a molecule that contains a photoreactive group which produces highly reactive intermediates upon photolysis. The most widely used classes of photoactive functionality include benzophenones, trifluoromethylphenyldiazirines, and arylazides, which give rise to diradicals, carbenes and nitrenes by UV irradiation. These generated intermediates can produce hydrogen abstraction reactions, initiate highly efficiency double bond addition reactions, insertion reactions to C-H and N-H bonds (carbenes, nitrenes) with neighboring biomolecules giving stable covalent adducts. Each of these families of compounds have advantages and disadvantages. For example, benzophenones are chemically more stable than azides and diazirines, can be manipulated in ambient light and like diazirines are activated at 350 nm avoiding wavelengths that cause protein damage. However, its bulky size and hydrophobicity can complicate the binding with the macromolecule. On the other hand, arylazides give reactions with high efficiency, present excellent stability for storage and their synthesis is easy but they are activated at wavelengths that could affect the biological system under study. Finally, trifluoromethylphenyldiazirines meet most of the characteristics of an ideal photoreactive, although their synthesis needs more steps. Herein, we report the synthesis of modified variants of β-lactam antibiotics that can be used as affinity photoprobes in order to elucidate the molecular events that lead to the induction of resistance systems in bacteria. Using these photoprobes we demonstrate that the membrane protein VraS interacts directly with β-lactam antibiotics, which results in its autophosphorylation and phosphotransfer to VraR.Fil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentin

    Overcoming differences: The catalytic mechanism of metallo-β-lactamases

    Get PDF
    Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-β-lactamases, analyzed at the light of structural and mutagenesis investigations. We propose that these enzymes present a modular structure in their active sites that can be dissected into two halves: one providing the attacking nucleophile, and the second one stabilizing a negatively charged reaction intermediate. These are common mechanistic elements in all metallo-β-lactamases. Nucleophile activation does not necessarily requires a Zn(II) ion, but a Zn(II) center is essential for stabilization of the anionic intermediate. Design of a common inhibitor could be therefore approached based in these convergent mechanistic features despite the structural differences.Fil: Meini, María Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Biológica. Área Biofísica; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Biológica. Área Biofísica; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Biológica. Área Biofísica; Argentin

    Medicinal chemistry of β-lactam antibiotics

    No full text
    The β-lactam class of antibacterials is a cornerstone of human health. For nearly eight decades, their unparalleled clinical efficacy and clinical safety have made the β-lactam class preeminent in the treatment of bacterial infection. The relatively brief period in human history during which the β-lactams have exerted this benefit is a period characterized by continuous medicinal chemistry innovation, seen visibly in the progression from the penicillins to the complex ensemble of β-lactams (now including also cephalosporins, monobactams, and carbapenems) used in the clinic. The key force behind this innovation is the progressive evolution by bacteria of resistance mechanisms. Today, highly resistant bacteria challenge the way medicinal chemists contemplate the creative alteration of β-lactam structures, the way the pharmaceutical industry develops β-lactams (and other antibacterial) structures, and the way the medical community uses antibacterials. This article gives a concise summary of the history of the β-lactams. Its emphasis is recent structural innovation with respect to the β-lactams, and with respect to structurally related classes that act to preserve the clinical activity of the β-lactams through inhibition of bacterial β-lactam-hydrolyzing, and thus β-lactam-deactivating, enzymes. We integrate these chemistry advances with new biological discoveries with respect to the bactericidal mechanism of the β-lactams and with respect to bacterial resistance mechanisms. The combination of these perspectives is a foundational perspective to guide the medicinal chemistry future of the β-lactams.Fil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Fisher, Jed F.. University of Notre Dame-Indiana; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame-Indiana; Estados Unido
    corecore