4 research outputs found

    Impacts of traverse speed and material thickness on abrasive waterjet contour cutting of austenitic stainless steel AISI 304L

    Get PDF
    Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate

    Recent progress trend on abrasive waterjet cutting of metallic materials: A review

    Get PDF
    Abrasive water jet machining has been extensively used for cutting various materials. In particular, it has been applied for difficult-to-cut materials, mostly metals, which are used in various manufacturing processes in the fabrication industry. Due to its vast applications, in-depth comprehension of the systems behind its cutting process is required to determine its effective usage. This paper presents a review of the progress in the recent trends regarding abrasive waterjet cutting application to extend the understanding of the significance of cutting process parameters. This review aims to append a substantial understanding of the recent improvement of abrasive waterjet machine process applications, and its future research and development regarding precise cutting operations in metal fabrication sectors. To date, abrasive waterjet fundamental mechanisms, process parameter improvements and optimization reports have all been highlighted. This review can be a relevant reference for future researchers in investigating the precise machining of metallic materials or characteristic developments in the identification of the significant process parameters for achieving better results in abrasive waterjet cutting operations

    Multi-objective Optimisation in Abrasive Waterjet Contour Cutting of AISI 304L

    Get PDF
    The optimum waterjet machining parameters were found for maximising material removal rate and minimising surface roughness and kerf taper angle where three levels of traverse speed, abrasive flow rate, and waterjet pressure are used. The multi-linear regression equations were obtained to investigate the relationships between variables and responses, and the statistical significance of contour cutting parameters was analysed using the analysis of variance (ANOVA). Further, the response surface methodology (desirability function approach) was utilised for multi-objective optimisation. The optimum traverse speeds were 95 mm/min for 4 mm thickness and 90 mm/min for both 8 and 12 mm thicknesses. For all material thicknesses, the abrasive mass flow rate and waterjet pressure were 500 g/min and 200 MPa, respectively. The minimum values of surface roughness, kerf taper angle, and maximum material removal rate for 4-, 8- and 12-mm material thicknesses were respectively 0.799º, 1.283 μm and 297.98 mm3/min; 1.068º, 1.694 μm and 514.97 mm3/min; and 1.448º, 1.975 μm and 667.07 mm3/min. In this study, surface roughness and kerf taper angle decreased as the waterjet pressure and abrasive mass flow rate increased; and this is showing a direct proportional relationship with traverse speed, abrasive mass flow rate and waterjet pressure

    Recent Progress Trend on Abrasive Waterjet Cutting of Metallic Materials: A Review

    No full text
    Abrasive water jet machining has been extensively used for cutting various materials. In particular, it has been applied for difficult-to-cut materials, mostly metals, which are used in various manufacturing processes in the fabrication industry. Due to its vast applications, in-depth comprehension of the systems behind its cutting process is required to determine its effective usage. This paper presents a review of the progress in the recent trends regarding abrasive waterjet cutting application to extend the understanding of the significance of cutting process parameters. This review aims to append a substantial understanding of the recent improvement of abrasive waterjet machine process applications, and its future research and development regarding precise cutting operations in metal fabrication sectors. To date, abrasive waterjet fundamental mechanisms, process parameter improvements and optimization reports have all been highlighted. This review can be a relevant reference for future researchers in investigating the precise machining of metallic materials or characteristic developments in the identification of the significant process parameters for achieving better results in abrasive waterjet cutting operations
    corecore