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Chapter

Multi-objective Optimisation in
Abrasive Waterjet Contour Cutting
of AISI 304L
Jennifer Milaor Llanto, Ana Vafadar and Majid Tolouei-Rad

Abstract

The optimum waterjet machining parameters were found for maximising material
removal rate and minimising surface roughness and kerf taper angle where three
levels of traverse speed, abrasive flow rate, and waterjet pressure are used. The multi-
linear regression equations were obtained to investigate the relationships between
variables and responses, and the statistical significance of contour cutting parameters
was analysed using the analysis of variance (ANOVA). Further, the response surface
methodology (desirability function approach) was utilised for multi-objective optimi-
sation. The optimum traverse speeds were 95 mm/min for 4 mm thickness and
90 mm/min for both 8 and 12 mm thicknesses. For all material thicknesses, the
abrasive mass flow rate and waterjet pressure were 500 g/min and 200 MPa, respec-
tively. The minimum values of surface roughness, kerf taper angle, and maximum
material removal rate for 4-, 8- and 12-mm material thicknesses were respectively
0.799º, 1.283 μm and 297.98 mm3/min; 1.068º, 1.694 μm and 514.97 mm3/min; and
1.448º, 1.975 μm and 667.07 mm3/min. In this study, surface roughness and kerf taper
angle decreased as the waterjet pressure and abrasive mass flow rate increased; and
this is showing a direct proportional relationship with traverse speed, abrasive mass
flow rate and waterjet pressure.

Keywords: abrasive water jet, contour cutting, surface roughness, kerf taper angle,
material removal rate, response surface methodology, multi-objective optimisation

1. Introduction

Contour cutting is one of the processes applied in metal fabrication industries.
There are several non-traditional technologies employed for contour cutting, such as
electro discharge machining, laser beam machining and electrochemical discharge
machining, that have been noted to provide exemplary performance [1]. Accordingly,
Abrasive Water Jet Machining (AWJM) is an advanced manufacturing techniques
that demonstrated advantages to non-traditional machining technology owing to: its
capability in cutting complex geometries, its absence of tool wear, its absence of
thermal distortion, and it being environmentally friendly [2, 3]. The cutting process in
AWJM is based on removing materials from a target workpiece via erosion [4].
Within this process, contour profiles in various types of programs are downloaded in a
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computer-based controller, where subsequently a high-pressure pump releases
pressurised water in the nozzle system. The pressurised water, moving with a high
velocity, is released from the orifice in a very thin stream structure [5]. The high-
speed water jet that contains abrasive particles is then accelerated to generate an
abrasive waterjet. Finally, the focusing tube drives the abrasive waterjet to its target
point for cutting the material [4, 6]. The compounded granular abrasive and high-
pressure waterjet stream makes the abrasive waterjet capable of machining various
workpieces, such as metals.

The performance of AWJM is influenced by several process parameters, which can
be varied constantly within a period. In general, the primary goal of the metal fabri-
cation industry is to manufacture high quality products in a shortened period. To
attain productivity and economy objectives, it is imperative to select an optimum
combination of process parameters within the abrasive waterjet cutting processes.
Conventionally, the identification of the most suitable values of process parameters is
accomplished by the execution of many experiments. Hence, to establish the optimum
combination of process parameters in the absence of extensive experimental exertion,
researchers have utilised advanced modelling techniques and optimisation in
progressing the performance of abrasive waterjet cutting. For instance, Rao et al. [7]
have investigated the impacts of traverse speed, standoff distance and abrasive mass
flow rate in AWJM of AA631-T6. They have considered single-objective and multi-
objective optimisation attributes to achieve optimum solutions by utilising Jaya and
MO-Jaya algorithms, which were a posterior optimisation used to solve constrained
and unconstrained conditions. The objectives of maximising material removal and
minimising kerf taper angle and surface roughness were achieved by lower traverse
speed and standoff distance and higher abrasive mass flow rate. Moreover, they
determined that multi-objective Jaya algorithm achieved better results as compared
with other algorithms, such as simulated annealing (SA), particle swam optimization
(PSO), firefly algorithm (FA), cuckoo search (CS) algorithm, blackhole (BH) algo-
rithm, bio-geography-based optimization (BBO) algorithm, non-dominated sorting
genetic algorithm (NSGA), non-dominated sorting teaching-learning-based optimi-
zation (NSTLBO) algorithm and sequential approximation optimization (SAQ). Nair
and Kumanan [8] have similarly applied weighted principal components analysis
(WPCA) for optimising AWJM process parameters in machining Inconel 617. These
authors evaluated the impacts of abrasive mass flow rate, standoff distance, table feed
and waterjet pressure against material removal rate and geometric accuracy. The
WPCA method uses internal tests and training samples to calculate the ‘weighted’
covariance matrix, establishing that an increase in standoff distance enhances the
abrasive flow volume, leading to less geometric errors and a higher rate of material
removal. Equivalently, Chakraborty and Mitra [9] have applied the grey wolf
optimiser (GWO) technique for AWJM cutting of AL6061to maximise material
removal rate and minimise surface roughness, simultaneously considering the
constrained values of input parameters i.e., nozzle diameter and titled angle, jet feed
speed, surface speed, waterjet pressure and abrasive mass flow rate. This algorithm
demonstrated a faster hunting of prey (discovering the optimum parameter settings),
due to the existence of a social hierarchy of grey wolves. They achieved maximum
MRR via higher rate of nozzle titled angle, surface speed, waterjet pressure and
abrasive mass flow rate. In the case of surface roughness, it attained its minimum
value at lower rate of waterjet pressure, jet feed and surface speed and higher rate of
abrasive mass flow. Trivedi et al. [10] have examined the impacts of process parame-
ters such as pressure, traverse rate and standoff distance on surface integrity in AWJM
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of AISI 316 L. Analysis of variance was employed to develop an empirical model by
regression analysis for surface roughness. These authors concluded traverse speed to
be the most significant parameter influencing surface roughness, whereby increasing
pressure improved the surface quality of the target workpiece. Additionally, they
established standoff distances, as the least contributing parameter. Research focused
on optimisation of cutting operations is being continuously undertaken by
researchers, where varied methods have been employed to solve different single and
multi-objective optimisation problems [11–14]. Whereas single-objective optimisation
problems have conventionally been applied, the performance of AWJM has mainly
been measured based on multiple responses. In accordance, a multi-objective
approach is required in order to optimise several categories of objective functions
simultaneously. Several methods have been developed to date, and are continuously
being progressed, in order to solve single-objective problems. Advances in optimisa-
tion techniques, such as: genetic algorithms (GA), simulated annealing (SA), artificial
bee colony (ABC), ant colony optimization (ACO), particle swarm optimization
(PSO) and teaching-learning-based optimization (TLBO), and others, have been
demonstrated to be remarkably efficient in defining the optimum value of AWJM
process parameters [15].

In abrasive waterjet contour-cutting, it has been realised that the impacts of most
influencing factors, such as waterjet pressure, abrasive mass flow rate, standoff dis-
tance and traverse speed in straight-slit cutting, are similar with contour cutting.
These research studies have shown the application of computational approaches for
optimising process parameters in abrasive waterjet contour cutting requires further
investigation. Therefore, this research considers the optimisation of relevant process
parameters, including traverse speed, abrasive mass flow rate, and waterjet pressure
on surface roughness, material removal rate and kerf taper angle in abrasive waterjet
contour cutting of AISI 304L of varied thicknesses.

In this work, the experiment was designed using Taguchi orthogonal array, where
a regression model has been developed to formulate the optimisation fitness function.
This modelling technique has been applied to predict the response and determine
optimum process parameters. In addition, response surface methodology (RSM) has
been employed for multi-objective optimization, in order to obtain optimum values of
input process parameters and to investigate the impacts and interactions against
response parameters.

2. Methodology

In this study, three major steps were employed, consisting of abrasive waterjet
contour cutting experiments, regression modelling and optimisation. The experiment,
modelling and optimisation procedures are presented in Figure 1. The experiment was
conducted using the Taguchi L9 orthogonal array to analyse the impacts of input
parameters, i.e., traverse speed, abrasive mass flow rate and waterjet pressure. Desir-
ability analysis using response surface methodology is employed for the experimental
results of material AISI 304L. In this desirability analysis, multi-responses are consid-
ered. It establishes the optimum set of the selected process parameters on the perfor-
mance characteristics.

A regression model was developed using the machining process parameters from
the experimental execution to extract mathematical models. A linear stepwise regres-
sion analysis was performed to predict the surface roughness, material removal rate
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and kerf taper angle value. The reliability of the models generated was assessed based
on coefficient of determination (R2, R2adj & R2pred). However, supposing that
regression models are not within the acceptable range or do not provide preferable
values of coefficients of determination set by the decision-maker, it is anticipated that
these models will not provide precise prediction. Therefore, the selected parameter
setting conflicts with the response variables, denoting the necessity for modification
of independent variables or experimental design [16].

Figure 1.
Multi-objective optimisation process flow chart.
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Referring to Figure 1, after achieving the fittest models, a multi-objective optimi-
sation was performed by using response surface methodology with the objectives of
maximising material removal, whilst minimising surface roughness and kerf taper
angle. The number of solutions and iterations (i = 1 to n) may vary, depending on the
machining process requirements to establish the best alternative or solution. Hence, if
the composite desirability is not within the tolerable array, several iterations repeating
the response surface optimisation were executed. Subsequently, if these repetitions
reached the maximum number of iterations and the composite desirability is not
attaining adequate values, modifying the design of experiments and the
corresponding independent variables or its values is necessary [16]. Moreover, in
some cases, other soft computing techniques should be considered [17].

2.1 Material and experimental design

In this work, the material machined in the experiments was AISI 304L with varied
thicknesses of 4, 8 and 12 mm. The assigned material thicknesses with differing
uniform gaps were used to gain a better yield of variations in AWJM cutting behav-
iour. Stainless steel, such as AISI 304L, is widely used in fabrication industries, where
it is recognised for its high strength and corrosion and heat resistance. This results
from its high alloying content of Cr and Ni [18]. The chemical and mechanical
composition of this material is detailed in Table 1.

The setup consisted of an OMAX MAXIEM 1515 abrasive waterjet machine,
possessing a direct drive pump and dynamic cutting head with maximum pressure of
413.7 MPa and cutting area of 2235 mm length and 1727 mm width. The cutting head is
comprised of a mixing chamber for abrasive and waterjet, along with a nozzle diameter
of 0.56 mm and a jet impact angle of 90°. An abrasive garnet with a mesh size of #80
was utilised for abrasive waterjet cutting experiments. The unit is inclusive of IntelliMax
software, where the experiment setup conditions were uploaded and entered. The
cutting head can move in the Z-axis over a distance of 305 mm, with a maximum
traverse speed of 12,700 mm/min. Standoff distance was designated to 1.5 mm in
agreement with recommended range for abrasive waterjet machining in previous works
[20, 21]. The AWJM setup and process parameters are demonstrated in Figure 2.

Chemical composition in wt.% Mechanical properties

C 0.03 Hardness, Rockwell B 82

Mn 2 Tensile Strength, Ultimate, MPa 564

Si 0.75 Tensile Strength, Yield, MPa 210

Cr 18.00–20.00 Elongation at Break 58%

Ni 8.00–12.00 Modulus of Elasticity, GPa 193–200

P 0.045

S 0.03

Ni 0.1

Fe Remaining

Table 1.
Chemical and mechanical composition of AISI 304L [19].
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Upon completion of the experiments, the roughness of the machined surfaces was
quantified by a surface roughness tester (TR200 model). Figure 2 presents the cut
surface captured by LEICA M80, which indicates the measurement area for the
roughness. The kerf top and bottom width were measured using a LEICA M80 optical
microscope model. Moreover, rate of material removal and kerf taper angle were
calculated using Eqs. (1) and (2), respectively [11]. The roughness of the cut surface
determined according to the ISO/TC 44 N 1770 standard, (μm);W t is width of the cut
surface at the jet inlet, (mm]; Wb is the width of the cut surface at the jet outlet,
(mm); u is the angularity or perpendicular deviation, (mm); α°- inclination angle of
the cut surface, (°); MRR is the Material Removal Rate, (mm3/min); t is the thickness
of the material (mm) [22].

MRR ¼ ht
W t þWb

2

� �
V f (1)

KTA ¼ Arctan
W t þWb

2ht

� �
(2)

The input parameters considered in abrasive waterjet contour cutting in this
experiment included traverse rate (Vf ), abrasive flow rate (ma) and water pressure

(P), as these parameters have been demonstrated in previous studies as having signif-
icant impacts in AWJM applications [10, 12, 23, 24]. Surface integrity, kerf geometries

Figure 2.
AWJM setup and process parameters.
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and low material removal rate evidence has been reported in machining of AISI 304L,
requiring further improvement [4, 25]. Furthermore, taper angles formed in AWJM
demonstrate different inclinations as contour curvature radius differs [26]. Hence,
quality and productivity are an intensified demand in various manufacturing fields
and are significant performance indicators for machining processes. Therefore, in this
study, material removal rates (MRR), surface roughness (Ra) and kerf taper angle
(KTA) have been chosen as process parameter characteristics for abrasive waterjet
contour cutting investigations, due to their influence against the selected input
parameters. The levels of the considered independent variables, responses and coding
assignment have been detailed in Tables 2 and 3.

Abrasive waterjet cutting was executed for three different profiles, representing
straight-line, inner arcs and outer arcs, as part of the completed twelve profiles, as
demonstrated in Figure 2. The abovementioned profiles were selected to confirm a
broad array of complicated machining profiling applications. The levels of profiles
employed showed occurrences of surface roughness, low machining rate and inaccu-
racies of cut geometries in regard to previous works [27, 28], recommending further
studies, predominantly for difficult-to-cut materials, such as AISI 304L (Figure 3).

The design of experimentation (DOE) was carried out using the Taguchi approach
in MINITAB 19 software. The Taguchi method is useful in determining the best
combination of factors under desired experimental conditions, reducing the large
number of experiments which would be required in traditional experiments as the
number of process parameter increases [29, 30].

In Taguchi’s approach, selection of the appropriate orthogonal array depends on
aspects such as: the number of input and response factors along with the interactions
that are of key significance; number of levels of data for input factors; and required
resolution of experiment and limitations cited on cost and performance [29, 31]. With
this specific advantage, this method is suitable in conducting experiments with an
appropriate number of tests to determine the optimal combination and significance of
the selected factors [32]. The relevant variation in thicknesses dictates different
material responses. Therefore, Taguchi L9 orthogonal array was executed for three

Independent variables Codes Levels

1 2 3

Traverse speed, Vf = mm/min X1 90 120 150

Abrasive mass flow rate, ma = g/min X2 300 400 500

Waterjet pressure, P = MPa X3 200 250 300

Table 2.
Levels of input process parameters.

Profiles Surface roughness, μm Material removal rate, mm3/min Kerf taper angle, 0

Straight-line, 20 mm Ra1 MRR1 KTA1

Inner arc, R10 Ra2 MRR2 KTA2

Outer arc, R20 Ra3 MRR3 KTA3

Table 3.
Output parameters for varied profiles.
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levels of material thicknesses (t), i.e., 4, 8 and 12 mm, as presented in Table 4. The
AWJM performances were analysed accordingly by the applied material thickness.

2.2 Modelling and multi-objective optimisation

A mathematical model was developed to associate the input process parameters to
the response’s characteristics. To achieve this, a linear regression was employed to
develop models for the prediction of responses. The empirical model for the predic-
tion of the responses in regard to controlling parameters was established by linear
regression analysis. Regression analysis was then applied to obtain the interactions
between independent and dependent variables [33]. Multi-linear regression involves
regression analysis of dependent and independent variables exhibiting a linear rela-
tionship [34]. It stipulates the relationship between two or more variables and a
response variable by fitting a linear equation to examine data. The value of the
independent variable x or process parameter is correlated with a value of the
dependent variable, y, which is the output parameter. In general, this analysis is
applied to investigate the degree of relationship between multiple variables fitted by a
straight line [33].

Figure 3.
Abrasive waterjet contour cutting profiles.

Exp. No. Input Parameters

Vf ma P

(mm/min) (g/min) (MPa)

1 90 300 200

2 90 400 250

3 90 500 300

4 120 300 250

5 120 400 300

6 120 500 200

7 150 300 300

8 150 400 200

9 150 500 250

Table 4.
Taguchi L9 orthogonal array.
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In general, regression model is expressed by Eq. (3) [33].

y ¼ ∝þ β1x1 þ e (3)

Wherein : e ¼ y1 � by1 (4)

where, y = dependent variable, α = constant, x1 = Independent variable, β1=
coefficient of independent variablex1, e = error, y1= regression line values and by1 =
actual observation.

If this involves more than one variables, then it is categorised as multi-regression
as shown in Eq. (5) [33].

y ¼ ∝þ β1x1 þ β2x2 þ β3x3 þ … … … βnxn þ en (5)

A multi-linear regression analysis can be employed to fit a predictive model to an
observed data set of values of output and input variables. The obtained results of surface
roughness, material removal rate and kerf taper angle were expressed in terms of the
input parameters such as traverse speed (X1) abrasive mass flow rate (X2) and
waterjet pressure (X3).

The predicted values are functional for optimising the parameters by providing an
adequate comprehension of the significant parameters. The percentage of error
between the experimental data and acquired predicted values has been calculated
based on Eq. (6) [33]. The relative percentage of error was acceptable at <20%
[35].

Error ¼
1

n

X1

n

Response experimentð Þ � Response predictedð Þ

Response experimentð Þ

" #

% (6)

The performance of the established regression model was assessed by statistical
approaches to confirm the goodness-of-fit of the model and the impact of the
predicted variables. Following this, the significance and effectiveness of the developed
models were validated by analysis of variance. Analysis of variance (ANOVA) is a
statistical method that facilitates the evaluation of comparative influences for each control
parameter [36, 37]. The significance of input parameters including traverse speed,
abrasive mass flow rate and waterjet pressure were investigated using p- values and
determination of coefficient (R2). In this work, a confidence interval of 95% (p
< 0.05) has been applied that is in alignment with previous works [29, 38, 39]. A 95%
confidence interval means that there is only a 5% chance of being the wrong estima-
tion; therefore, the influence of each process parameter or other interactions on the
responses is considered insignificant if their p-values were estimated at more than
0.05 [37].

The determination of coefficient (R2, R2adj and R2pred) refers to the percentage
variation of responses ranging from 0–100%. These indicators determine the ade-
quacy of the model against obtained experimental data and predicted observation.
This R2, R2adj and R2pred value of ≥80%, proved a better model fits of the obtained
data [35].

Response surface methodology (RSM) can be utilised for multi-objective optimi-
sation. This multi-desirability is based on multi-response optimisation using an objec-
tive function D(X), denoted as desirability function [40]. This method translates each
response (yi) into a desirability function (di), differing in the array of 0 ≤ di ≤ 1,
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where desirability function =0 indicates an undesirable response and desirability
function =1 represents a fully desired response [41]. The objective function D is
specified by Eq. (7) [40].

D ¼ d1Xd2X… … dnð Þ
1=n ¼

Yn

i¼1

di

 !1=n

(7)

The effectiveness of multi-objective optimisation is anticipated based on the
method used for establishing priority weights for each response characteristics [42].
Generally, equal importance is set for selected responses; hence, weights may differ
depending on the machining process requirements in order to establish the most
suitable solution [43].

A simultaneous optimisation process was employed to determine the levels of
resulting to the maximum overall desirability. The responses namely Ra, MRR and
KTA were optimised concurrently to assess the set of input process parameters with
the objectives of maximising MRR and minimising Ra and KTA.

3. Results and discussion

3.1 Regression models and analysis for surface roughness

The multi-linear regression coefficients are summarised in Table 5, exhibiting the
correlation between the input parameters and the output surface roughness for
straight-line, inner and outer arc profiles for material thicknesses of 4, 8 and 12 mm.
The values of coefficients for all profiles and thicknesses demonstrate a similar trend,
showing that constant and variable X1 is positive and variables X2 and X3 are negative.
The coefficient indicates the change in the mean response relating in the variation of
the specific term, whilst the other term in the model remains constant. The relation-
ship between a term and response is denoted by the sign of the coefficient [44]. The
negative correlation coefficient denotes an inverse relationship between variables and
responses; and therefore, if it is positive as the coefficient increases, the response
mean value also increases. Therefore, an increasing rate of traverse speed (X1) results
in an incremental value of surface roughness. Moreover, an increasing rate of abrasive
mass flow and waterjet pressure indicates/obtains a decreasing value of surface
roughness. The values of R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.33–
99.08%, 90.94–98.52% and 88.66–96.17%, respectively. This indicates that regression
models denote an acceptable confirmation of the relationship between the indepen-
dent variables and Ra response, which denotes a high significance of the model.
Therefore, the multi-linear model is reliable and can be utilised in the optimisation of
process parameters. It can be observed that the R2, R2adj and R2pred obtained from
straight-line, inner and outer arcs profiles have a uniform gap of at least 2%, which is
comparable for all material thicknesses. Hence, this minimal gap denotes an insignif-
icant difference between the surface roughness achieved from straight and curvature
profiles [36].

The results detailed in Table 5 show that the highest value of R2, R2adj and R2pred
for 4 and 8 mm material thickness are achieved in Ra3 with the values of 97.26, 94.84
and 92.45%; 98.64, 97.82 and 95.06%; 99.08, 98.52 and 96.17% respectively. Thus, Ra2
achieved the highest percentage of R2, R2adj and R2pred for 12 mm material thickness
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Term t = 4 mm t = 8 mm t = 12 mm

Ra1 Ra2 Ra3 Ra1 Ra2 Ra3 Ra1 Ra2 Ra3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 1.418 1.5394 1.4256 2.097 1.8107 1.76 2.542 2.3854 2.272

β1 0.003522 0.002944 0.003222 0.009814 0.003483 0.008869 0.005389 0.004276 0.003090

β2 - 0.000310 - 0.000300 - 0.000217 - 0.001464 - 0.000422 - 0.000577 - 0.000450 - 0.000446 - 0.000515

β3 - 0.001500 - 0.001300 - 0.001133 - 0.001955 - 0.000977 - 0.001920 - 0.002567 - 0.001924 - 0.001081

Model Summary

R2 95.26% 96.77% 97.26% 98.01% 98.16% 98.64% 97.73% 99.08% 94.33%

R2 (adj) 92.41% 92.41% 94.84% 96.82% 97.05% 97.82% 96.37% 98.52% 90.94%

R2 (pred) 90.58% 90.58% 92.45% 93.84% 93.77% 95.06% 93.33% 96.17% 88.66%

Table 5.
Summary of multi-linear regression coefficients for Ra.
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with the values of 99.08%, 98.52% and 96.17% accordingly. Therefore, the most fitted
and predominant models were Ra3 for both 4 and 8 mm, and Ra2 for 12 mm material
thickness. The predicted Ra values of regression models applied for straight-line,
inner and outer arcs profiles of three levels of material thicknesses are detailed in
Tables 6-8. The percentage error obtained for 4, 8 and 12 mm AISI 304L thicknesses
ranged from �4.22 to 3.44%, 3.30 to 6.71% and � 5.75 to 2.49%, respectively. The
errors determined for Ra between the predicted value and experimental results are less
than 20%, denoting that these models are reliable for predicting Ra values.

Figure 4 presents the residual plot for Ra, consisting of normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values
for the most fitted regression models for 4, 8 and 12 mm, at Ra3, Ra3 and Ra2,
respectively. Similarly, the normal probability plots for all the material thicknesses
demonstrated a close fit to a line in a normal probability graph. The points forming an

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.35 1.34 0.81 1.43 1.42 0.61 1.46 1.45 0.56

2 90 400 250 1.25 1.24 1.41 1.33 1.35 �1.56 1.37 1.36 1.06

3 90 500 300 1.09 1.13 �3.99 1.25 1.27 �1.72 1.24 1.26 �2.44

4 120 300 250 1.36 1.37 �1.26 1.46 1.46 �0.39 1.48 1.48 0.22

5 120 400 300 1.29 1.27 2.35 1.42 1.39 3.44 1.40 1.38 1.72

6 120 500 200 1.41 1.39 2.45 1.50 1.48 2.28 1.48 1.48 �0.28

7 150 300 300 1.41 1.40 0.68 1.50 1.50 �0.39 1.49 1.50 �1.11

8 150 400 200 1.48 1.52 �4.22 1.58 1.60 �1.56 1.58 1.60 �2.11

9 150 500 250 1.43 1.42 1.77 1.51 1.52 �0.72 1.53 1.51 2.39

Table 6.
Predicted Ra values of regression models for t = 4 mm.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.12 2.15 �3.30 1.81 1.80 1.06 2.01 2.00 0.47

2 90 400 250 1.88 1.91 �2.73 1.72 1.71 0.86 1.86 1.85 0.98

3 90 500 300 1.64 1.66 �2.16 1.60 1.62 �2.04 1.65 1.69 �4.40

4 120 300 250 2.41 2.35 6.71 1.84 1.86 �1.81 2.16 2.17 �1.14

5 120 400 300 2.14 2.10 3.38 1.78 1.77 1.29 2.08 2.02 6.23

6 120 500 200 2.22 2.15 6.30 1.83 1.82 0.74 2.16 2.15 0.79

7 150 300 300 2.52 2.54 �1.89 1.92 1.91 0.63 2.32 2.34 �2.15

8 150 400 200 2.56 2.59 �3.68 1.95 1.97 �1.92 2.46 2.48 �1.58

9 150 500 250 2.32 2.35 �2.62 1.89 1.88 1.18 2.33 2.32 0.79

Table 7.
Predicted Ra values of regression models for t = 8 mm.
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approximately straight-line and falling along the fitted line denotes that the data is
normally distributed and there is a good relation between measured and estimated
response values [45]. In general, the residuals versus fits and observation graph for
each material thickness display that the points are distributed randomly and near both
sides of 0, with no distinguished pattern denoting a minimal deviation within resid-
uals and estimated values. This graph plots the difference between the experimental
data as predicted on the y-axis and the fitted or predicted values on the x-axis, to
validate the assumption that the residuals have constant variance [46].

Figure 4 also exhibits the histogram graph for Ra, illustrating the distribution or
frequency of the residuals for all observations. The data shows the frequency of Ra for
4, 8 and 12 mm material thicknesses to range from �0.02 to 0.03, �0.05 to 0.05
and � 0.02 to 0.02, respectively. The histogram presents distribution of the surface
roughness obtained from varying material thicknesses. Figure 4 histogram of resid-
uals denotes that the residuals are normally distributed. These results reveal a minimal
interval of inequalities of the experimental data, indicating that the Ra models meet
their assumptions and are well fitted for the accuracy of prediction [46]. The effects of
process parameters were established by ANOVA, where surface roughness results are
given in Tables A1-A3 in the Appendix section.

Exp. no. Independent

variables

Ra1 (μm) Ra2 (μm) Ra3 (μm)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 2.39 2.38 1.17 2.26 2.25 0.42 2.18 2.18 �0.09

2 90 400 250 2.20 2.21 �0.50 2.12 2.11 0.60 2.09 2.07 1.20

3 90 500 300 2.00 2.03 �3.17 1.95 1.97 �1.98 1.99 1.97 2.49

4 120 300 250 2.42 2.41 0.83 2.29 2.28 0.30 2.22 2.22 0.69

5 120 400 300 2.25 2.24 1.17 2.16 2.14 2.03 2.05 2.11 �5.75

6 120 500 200 2.48 2.45 3.00 2.29 2.29 �0.39 2.15 2.17 �2.15

7 150 300 300 2.45 2.45 0.50 2.30 2.32 �1.36 2.27 2.26 1.46

8 150 400 200 2.60 2.66 �5.67 2.45 2.46 �1.34 2.32 2.31 0.43

9 150 500 250 2.51 2.48 2.67 2.34 2.32 1.74 2.22 2.21 1.72

Table 8.
Predicted Ra values of regression models for t = 12 mm.

Figure 4.
Residual plots for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm (c) Ra2 (μm) for
t = 12 mm.
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The impacts of the parameters for all profiles across the three levels of material
thicknesses demonstrated a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05, as detailed in
Tables A1-A3. Accordingly, this work has established that abrasive mass flow rate is
an insignificant input parameter for obtaining p-Values >0.05, ranging from 0.002 to
0.067. Figure 5 represents the percentage contribution of variables for Ra of the most
fitted regression models for 4, 8 and 12 mmmaterial thickness. Overall, traverse speed
features as the most influencing parameter, followed by waterjet pressure and abra-
sive mass flow rate. It can be observed here that the influence of traverse speed
decreases, ranging from 69.39 to 58.85%, as the material thickness increases. In
AWJM, an increasing traverse speed reduces the number of abrasive particles, leading
to higher occurrences of surface roughness [47]. Figure 5 shows that as the material
thickness increases, the percentage contribution of waterjet pressure and abrasive
mass flow rate also increases, ranging from 24.09 to 33.1% and 3.77 to 5.31%, respec-
tively. The increasing value of waterjet pressure denotes higher energy, reinforcing a
larger amount of abrasive particles obtaining lower surface roughness [48]. Further,
an increasing rate of abrasive mass flow breaks down abrasive particles into smaller
sizes, resulting in more sharp edges that reduce surface roughness [15]. The percent-
age errors obtained were less than 20%, indicating acceptable reliability of the models,
as described in Eq. (6).

3.2 Regression model and analysis for material removal rate

Table 9 displays multi-linear regression coefficients of models developed for
material removal rate against input parameters i.e., traverse speed (X1), abrasive
mass flow rate (X2) and waterjet pressure (X3) for 4, 8 and 12 mm material
thicknesses of AISI 304L. Regardless of material thickness and cutting profile
category, the input parameter coefficients acquired a positive sign whilst the constant
coefficients had a negative sign. The sign of the coefficient denotes the trend of
relationship between variables and response [44]. As a result, an increasing rate of
traverse speed, abrasive mass flow rate and waterjet pressure, generates a higher rate
of material removal. Overall, the coefficient of determination R2 ranged from 97.79 to
97.92%, with R2adj ranging from 96.46 to 96.67% and R2pred ranging from 92.53 to
94.35%, confirming that all generated regression models were significant. The
models were established to be sufficient for accurate forecasting of material removal
rate within the assigned levels of input parameters for AWJM of straight and arcs
profiles. Furthermore, Table 9 demonstrated that MRR1 (straight-line), MRR2 (inner

Figure 5.
Percentage contribution of variables for surface roughness. (a) Ra3 (μm) for t = 4 mm (b) Ra3 (μm) for t = 8 mm
(c) Ra2 (μm) for t = 12 mm.
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arcs) and MRR3 (outer arcs) attained a uniform gap of at least 2% for R2, R2adj and
R2pred values. This nominal disparity of the coefficient of determination indicates
that AWJM performance for straight and curvature profiles are not significantly
different from one another [36]. The results detailed in Table 9 confirm that the
highest values of R2, R2adj and R2pred for all material thicknesses was attained in
MRR1 (straight-line profile) with values of 97.92, 96.67 and 94.35%; 98.86, 98.18
and 95.73%; 98.70, 97.92 and 95.19% respectively. This statistical measurement
evaluates the relationship between the model and response variables, indicating that a
value nearest to 100% denotes a more reliable model [49]. Therefore, MRR1 regres-
sion models are considered as the most fitted model for 4, 8 and 12 mm material
thicknesses.

Tables 10-12 present the predicted MRR values using the generated regression
models of 4, 8 and 12 mm thickness of AISI 304L for three varied contour profiles. The
percentage error acquired for 4, 8 and 12 mm AISI 304L thicknesses ranged from
�5.35 to 5.15%, �6.59 to 4.77% and � 5.05 to 6.62%, respectively. The errors deter-
mined for Ra between the predicted value and experimental results were less than
20%, indicating models to be well fitted for predicting MRR values.

Plots of all residuals of the best material removal rate (MRR1) for all material
thicknesses are represented in Figure 6. Overall, the normal probability plots for all
the material thicknesses illustrate that the adjacency of the points are linear indicating
there is no deviation from the assumptions, because they are normally and indepen-
dently distributed [46]. Residuals versus fits and observation for MRR1 of straight-
line, inner and outer arc profiles confirm that there is no skewness or outlier pattern,
revealing that individual deviated assumptions have no conflicts or contradictions.
Figure 6 also presents the histogram graph for MRR1, obtaining frequency ranging
from �10 to 15 for 4 mm, �15 to 15 for 8 mm and � 18 to 20 for 12 mm material
thicknesses. These results signify that the distribution or frequency of residuals for all
observations fell in minimal interval or inequalities of the experimental data, justify-
ing the adequacy of the suggested MRR1 models [46].

According to the results presented in Tables A4-A6 in the Appendix section,
detailing ANOVA for material removal rate, the effects of the input parameters for

Term t = 4 mm t = 8 mm t = 12 mm

MRR1 MRR2 MRR3 MRR1 MRR2 MRR3 MRR1 MRR2 MRR3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ �84.2 �33 �22.8 �119 �45 �60.6 �158.8 �43.3 �73.5

β1 1.752 1.562 1.440 2.941 2.658 2.708 3.867 4.476 3.416

β2 0.1260 0.0833 0.0901 0.2723 0.1738 0.0333 0.3960 0.205 0.2437

β3 0.5103 0.3430 0.4101 0.7770 0.775 0.950 0.917 0.511 1.080

Model Summary

R2 97.92% 97.56% 97.54% 98.86% 97.71% 94.73% 98.70% 96.37% 97.79%

R2 (adj) 96.67% 96.09% 96.06% 98.18% 96.33% 91.56% 97.92% 94.20% 96.46%

R2 (pred) 94.35% 90.74% 91.12% 95.73% 91.90% 82.30% 95.19% 89.41% 92.53%

Table 9.
Summary of linear regression coefficients for MRR.
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straight and arc profiles at 4, 8 and 12 mm AISI 304L thicknesses display compa-
rable results. Further, the results reveal that traverse speed and waterjet pressure
are statistically and physically significant factors for obtaining p-Values<0.05.
Hence, the abrasive mass flow rate features as a low impacting input parameter
for obtaining p-Values greater than the acceptable value of 0.05, ranging from
0.002 to 0.751.

The percentage contribution of variables for the most fitted regression models
MRR for 4, 8 and 12 mm material thicknesses are illustrated in Figure 6. In general,
traverse speed is indicated as the most impacting variable, followed by waterjet
pressure and abrasive mass flow rate, with a percent contribution ranging from 71.14–
78.94%, 12.11–24.09% and 2.65–9.03% respectively for all profiles and material thick-
nesses. It is apparent here that the percentage contribution of traverse speed increases

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 216.2 213.3 1.36 212.1 201.2 5.15 217.7 215.9 0.83

2 90 400 250 248.6 251.4 �1.10 223.1 226.7 �1.60 242.4 245.5 �1.27

3 90 500 300 284.2 289.5 �1.86 250.6 252.1 �0.62 267.8 275.0 �2.68

4 120 300 250 280.6 291.3 �3.82 251.7 265.2 �5.35 283.0 279.6 1.19

5 120 400 300 342.5 329.4 3.82 293.7 290.7 1.03 313.7 309.2 1.44

6 120 500 200 298.8 291.0 2.61 263.5 264.7 �0.45 286.2 277.2 3.14

7 150 300 300 372.1 369.4 0.73 333.8 329.2 1.38 343.9 343.4 0.16

8 150 400 200 330.7 330.9 �0.07 299.6 303.2 �1.21 298.5 311.4 �4.32

9 150 500 250 361.5 369.1 �2.09 333.5 328.7 1.44 344.8 340.9 1.14

Table 10.
Predicted MRR values of regression model for t = 4 mm.

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 367.9 382.8 �4.05 405.0 401.4 0.88 399.0 383.0 4.00

2 90 400 250 456.9 448.9 1.75 450.8 457.6 �1.50 427.2 433.8 �1.56

3 90 500 300 511.2 515.0 �0.74 501.8 513.7 �2.37 493.1 484.7 1.71

4 120 300 250 526.9 509.9 3.23 526.4 519.9 1.23 488.1 511.7 �4.84

5 120 400 300 572.9 576.0 �0.54 583.5 576.1 1.27 579.8 562.6 2.97

6 120 500 200 532.9 525.5 1.39 532.2 515.9 3.06 441.8 470.9 �6.59

7 150 300 300 633.7 637.0 �0.52 639.7 638.4 0.19 629.1 640.5 �1.81

8 150 400 200 583.9 586.5 �0.45 555.1 578.3 �4.17 576.3 548.8 4.77

9 150 500 250 647.8 652.6 �0.74 641.3 634.5 1.07 601.3 599.6 0.28

Table 11.
Predicted MRR values of regression model for t = 8 mm.
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in range from 71.4 to 77.55% as the material thickness increases. An increasing traverse
speed reinforces the contact time of the waterjet with the abrasive on the material,
producing a higher volume rate of material to the machine [9]. Contrastingly, the
percentage contribution of waterjet pressure and abrasive mass flow rate decreased as
the material thickness and traverse speed increased, ranging from 22.42–12.11% and
4.35–9.03%, respectively. The increasing traverse speed and depth or thickness of the
material to cut, results in a more prolonged machining process, which gradually leads
to subsiding kinetic energy and loss of large of abrasive particles, resulting in reduced
effectiveness of abrasive mass flow rate and waterjet pressure during the erosion
process (Figure 7) [9, 47].

3.3 Regression model and analysis for kerf taper angle

The summary of the multi-linear regression coefficients for kerf taper angle of
straight-line, inner and outer arc profiles using 4, 8 and 12 mm material thicknesses
are detailed in Table 13. The results provide a similar trend, showing the constant sign

Exp. no. Independent

variables

MRR 1 (mm3/min) MRR 2 (mm3/min) MRR 3 (mm3/min)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 472.0 491.5 �4.13 506.3 523.4 �3.37 528.9 523.1 1.10

2 90 400 250 586.2 576.9 1.58 542.1 569.5 �5.05 588.7 601.5 �2.17

3 90 500 300 655.9 662.4 �0.99 625.7 615.6 1.62 665.4 679.9 �2.18

4 120 300 250 676.0 653.4 3.35 731.7 683.2 6.62 687.5 679.6 1.15

5 120 400 300 735.0 738.8 �0.51 735.8 729.3 0.88 772.3 758.0 1.85

6 120 500 200 701.2 686.7 2.07 712.3 698.7 1.90 695.1 674.4 2.98

7 150 300 300 813.0 815.2 �0.27 822.4 843.1 �2.51 835.4 836.1 �0.09

8 150 400 200 755.6 763.1 �1.00 811.9 812.5 �0.07 725.0 752.5 �3.79

9 150 500 250 841.6 848.6 �0.83 845.6 858.6 �1.54 837.6 830.9 0.80

Table 12.
Predicted MRR values of regression model for t = 12 mm.

Figure 6.
Residual plots for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1 (mm3/min) for
t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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as positive, with variables X1, X2 and X3 as negative for all profiles and thicknesses. If
the coefficient sign is negative, as the variable increases, the response decreases,
whereas if the coefficient is positive, the relationship between variables and responses
is directly proportional [44]. Therefore, an increasing rate of traverse speed (X1)
results in an increasing angle of the kerf taper. Thus, an increasing rate of abrasive
mass flow and waterjet pressure reduces the value of kerf taper angle. The values of
R2, R2adj and R2pred for 4, 8 and 12 mm ranged from 94.74–99.37%, 91.59–98.99%
and 80.11–97.66%, respectively. This confirms that regression models are reliable in
representing correlation between variables and responses and can be used in the
optimisation of process parameters.

The coefficient of determination (R2, R2adj and R2pred) obtained from straight-
line, inner and outer arc profiles for all material thicknesses had a similar and consis-
tent gap of at least 2%. The AWJM provides comparable behaviour in processing both
straight and curvature profiles [36]. The highest values of R2, R2adj and R2pred for 4
and 8 mm material thicknesses were attained in KTA1 with values of 97.56, 96.09 and
90.57%; 98.02, 96.82 and 92.01%; 99.37, 98.99 and 97.66%, respectively. These are the
most fitted model, to be utilised in the optimisation of the process parameters of this
study.

The predicted KTA values using the regression models applied for straight-line,
inner and outer arc profiles of the three levels of material thicknesses are detailed in
Tables 14-16. The percentage error obtained for 4, 8 and 12 mm AISI 304L thick-
nesses ranged between �2.55 to 1.72%, �2.67 to 3.74% and � 3.14 to 2.43%, respec-
tively. The errors calculated for KTA between the predicted value and experimental
results were less than the acceptable maximum limit of 20%, indicating the reliability
of the models in predicting KTA values.

Figure 8 illustrates the residual plot for KTA including normal probability plot,
residual versus fits, histogram for residuals and residuals versus experimental values.
The results showed that the most fitted regression model is achieved from KTA1 for all
material thicknesses. Correspondingly, the normal probability plots for all material
thicknesses present a near fit to a line in a normal probability graph. The points
constructing an approximate straight-line and plotted along the fitted line signifies
that the data is normally distributed and there is a good relation between experimental
data and predicted values [45]. Predominantly, the residuals versus fits and observa-
tion graph for each material thickness exhibit that the points are plotted randomly and
near both sides of 0 with no identified pattern denoting a minimal deviation within
residuals and estimated values. Figure 8 also presents the histogram graph for KTA

Figure 7.
Percentage contribution of variables for material removal rate. (a) MRR 1 (mm3/min) for t = 4 mm (b) MRR 1
(mm3/min) for t = 8 mm (c) MRR (mm3/min) for t = 12 mm.
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Term t = 4 mm t = 8 mm t = 12 mm

KTA1 KTA2 KTA3 KTA1 KTA2 KTA3 KTA1 KTA2 KTA3

Coef Coef Coef Coef Coef Coef Coef Coef Coef

∝ 0.9674 1.0469 1.064 1.386 1.483 1.544 1.5981 1.971 1.998

β1 0.002414 0.002155 0.001501 0.006143 0.003594 0.004333 0.006568 0.004556 0.004736

β2 - 0.000235 - 0.000220 - 0.000136 �0.00052 �0.000525 �0.00035 - 0.000107 - 0.000400 - 0.000436

β3 - 0.000932 - 0.000952 - 0.000668 �0.002039 �0.001346 - 0.001867 - 0.002319 - 0.002320 - 0.002286

Model Summary

R2 97.56% 97.26% 94.74% 98.02% 94.76% 96.79% 99.37% 96.30% 96.95%

R2 (adj) 96.09% 95.61% 91.59% 96.82% 91.61% 94.87% 98.99% 94.08% 95.12%

R2 (pred) 90.57% 88.61% 84.48% 92.01% 80.11% 88.29% 97.66% 86.50% 88.70%

Table 13.
Summary of linear regression coefficients for KTA.
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illustrating the distribution or frequency of the residuals for all observations. The
results show that the frequency of KTA for 4, 8 and 12 mm material thicknesses range
from�0.002 to 0.015, �0.05 to 0.05 for 8 mm and� 0.02 to 0.03, respectively. These
graphs reveal a minimal interval or inequalities of the experimental data indicating
that the KTA regression models are highly fitted to concrete prediction [46].

Tables A7-A9 in the Appendix section detail the results of ANOVA, where it can
be observed that the impacts of parameters for all profiles and three levels of material
thicknesses demonstrate a similar trend, denoting traverse speed and waterjet pres-
sure to be significant factors for acquiring p-Values lower than 0.05. Thus, the abra-
sive mass flow rate was found insignificant for achieving p-Values >0.05, ranging
from 0.002 to 0.245 for all profiles and material thicknesses.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.38 1.38 0.04 1.40 1.38 1.42 1.43 1.46 �1.83

2 90 400 250 1.22 1.22 �0.12 1.27 1.26 0.76 1.34 1.33 0.91

3 90 500 300 1.04 1.07 �2.65 1.13 1.14 �0.94 1.21 1.20 0.87

4 120 300 250 1.48 1.46 1.50 1.43 1.42 0.43 1.54 1.49 3.07

5 120 400 300 1.35 1.30 3.42 1.30 1.30 �0.07 1.35 1.36 �1.07

6 120 500 200 1.44 1.46 �0.81 1.34 1.38 �3.20 1.49 1.52 �1.75

7 150 300 300 1.50 1.54 �2.67 1.44 1.46 �1.67 1.50 1.53 �1.96

8 150 400 200 1.68 1.69 �0.61 1.53 1.54 �0.81 1.70 1.68 1.11

9 150 500 250 1.56 1.54 1.41 1.48 1.42 3.74 1.56 1.55 0.46

Table 15.
Predicted KTA values of regression model for t = 8 mm.

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 0.93 0.93 0.23 0.99 0.98 0.41 1.02 1.02 �0.19

2 90 400 250 0.86 0.86 0.26 0.92 0.92 0.84 0.98 0.98 0.15

3 90 500 300 0.77 0.79 �2.30 0.83 0.85 �2.16 0.94 0.93 0.53

4 120 300 250 0.95 0.95 �0.60 1.00 1.00 0.16 1.04 1.04 0.78

5 120 400 300 0.90 0.88 1.74 0.94 0.93 1.33 0.96 0.99 �2.55

6 120 500 200 0.97 0.95 1.72 1.00 1.01 �0.20 1.05 1.04 0.70

7 150 300 300 0.98 0.98 0.34 1.01 1.02 �0.80 1.06 1.05 1.13

8 150 400 200 1.03 1.05 �1.70 1.08 1.09 �1.44 1.09 1.10 �1.21

9 150 500 250 0.98 0.98 0.09 1.04 1.02 1.68 1.06 1.05 0.54

Table 14.
Predicted KTA values of regression model for t = 4 mm.
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Figure 9 exhibits the percentage contribution of variables for KTA for the
most fitted regression models for 4, 8 and 12 mm material thickness. Traverse
speed was the most influencing parameter, followed by waterjet pressure and
abrasive mass flow rate, in agreement with previous studies [14, 37]. The obtained

Exp. no. Independent

variables

KTA1 (°) KTA2 (°) KTA3 (°)

X1 X2 X3 Exp. Pred. Error % Exp. Pred. Error % Exp. Pred. Error %

1 90 300 200 1.70 1.69 0.39 1.80 1.80 0.18 1.85 1.84 0.49

2 90 400 250 1.57 1.57 0.07 1.63 1.64 �0.48 1.67 1.68 �0.26

3 90 500 300 1.43 1.44 �0.70 1.45 1.49 �2.20 1.49 1.52 �2.08

4 120 300 250 1.79 1.77 0.87 1.83 1.82 0.92 1.88 1.86 0.88

5 120 400 300 1.65 1.65 0.14 1.67 1.66 0.60 1.71 1.71 0.43

6 120 500 200 1.86 1.87 �0.72 1.90 1.85 2.43 1.92 1.89 1.51

7 150 300 300 1.84 1.86 �0.85 1.85 1.84 0.52 1.89 1.89 0.13

8 150 400 200 2.06 2.08 �0.81 1.97 2.03 �3.14 2.02 2.08 �2.93

9 150 500 250 1.98 1.95 1.51 1.89 1.87 0.82 1.95 1.92 1.55

Table 16.
Predicted KTA values of regression model for t = 12 mm.

Figure 8.
Residual plots for kerf taper angle. (a) KTA1 (°) for t = 4 mm (b) KTA1 (°) for t = 8 mm (c) KTA1 (°) for
t = 12 mm.

Figure 9.
Percentage contribution of variables for kerf taper angle. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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results have shown that the influence of traverse speed decreases in range from
64.21 to 53.33% as the material thickness increases. An increasing value traverse
speed results in the loss of a large number of abrasive particles, continuously
dropping as the material thickness also increases, leading to a higher angle of kerf
taper [50]. Figure 9 shows increases of material thickness, the percentage contri-
bution of waterjet pressure and abrasive mass flow rate, ranging from 26.60 to
33.40% and 6.75 to 12.65%, respectively. This increasing value of waterjet pressure
resulted in higher energy, generating a larger amount of abrasive particles that
result in a lower kerf taper [51]. Moreover, a rising rate of abrasive mass flow
breaks down abrasive particles into a smaller scale, generating more sharp points
that results in reduction of kerf taper angle [51].

4. Response surface methodology multi-objective optimisation

In this research, multi-objective optimisation was performed using RSM to deter-
mine the optimum process parameters of abrasive waterjet contour cutting of AISI
304L with varied thicknesses using MINITAB 19 software. The following optimisation
objectives were stated as follows:

f 1 ¼ Min Rað Þ (8)

f 2 ¼ Min KTAð Þ (9)

f 3 ¼ Max MRRð Þ (10)

RSM optimisation was performed using the models with the highest determination
of coefficients, i.e., R2, R2adj and R2pred. Accordingly, the regression models utilised
to minimise surface roughness were Ra3 for 4 and 8 mm and Ra2 for 12 mm. MRR1 and
KTA 1 models were used for all material thicknesses.

The Regression models utilised in multi-objective optimisation for varied thick-
nesses of AISI 304L were expressed by Eqs. (8)-(16).

Ra4mm ¼ 1:4256þ 0:003222 X1 � 0:000217 X2 � 0:001133 X3 (11)

KTA4mm ¼ 0:9674þ 0:002414 X1 � 0:000235 X2 � 0:000932 X3 (12)

MRR4mm ¼ �84:2þ 1:752 X1 þ 0:126 X2 þ 0:5103 X3 (13)

Ra8mm ¼ 1:76þ 0:008869 X1 � 0:000577 X2 � 0:001920 X3 (14)

KTA8mm ¼ 1:386þ 0:006143 X1 � 000520 X2 � 0:002039 X3 (15)

MRR8mm ¼ �119þ 2:941X1 þ 0:2723 X2 þ 0:777X3 (16)

Ra4mm ¼ 2:3854þ 0:004276 X1 � 0:000446 X2 � 0:001924 X3 (17)

KTA4mm ¼ 1:5981þ 0:006568 X1 � 0:000107 X2 � 0:002319 X3 (18)

MRR8mm ¼ �158:8þ 3:867X1 þ 0:396 X2 þ 0:917 X3 (19)

In simultaneous optimisation, goals and boundaries must be defined for each
process parameter. Targets are based on the experimental data obtained, referring to
the set highest value of responses for maximising MRR and lowest value of responses
for minimising Ra and KTA. In this optimisation, process parameters and defined
objectives were assigned to be equally significant. Therefore, the equal weights
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(wt. = 1) were assigned in order to achieve an equal importance to the process
parameters and objectives. The constraints referring to range and limits of the process
parameters are detailed below.

Constraints:
90 ≤Vf ≤ 150 mm/min

300 ≤ ma ≤ 500 g/min
200 ≤ P ≤ 300 g/min

Limits:
KTA4mm ≤ 1:03°,KTA8mm ≤ 1:68°,KTA12mm ≤ 2:06°

Ra4mm mm1:58 μm,Ra8mm mm2:45 μm,Ra12mm 2m2:46 μm

MRR4mm ≥ 216:20 mm3=min ,MRR8mm ≥ 367:90 mm3=min ,

MRR12mm ≥472:00 mm3=min

Table 17 shows the solutions for multi-objective optimisation performed for 4, 8
and 12 mm thickness of AISI 304L. The solution that provides the value of com-
posite desirability nearest to 1 can be considered as the best solution [40]. Table 17
reveals that solution 1 is the best for 4, 8 and 12 mm material thicknesses, achieving
composite desirability values of 0.748448, 0.780587 and 0.786800, respectively.
There are three solutions generated from MINITAB application, providing the set-
tings of input variables, achieved values of responses and composite desirability.
Solution 1 provides the optimum settings of input parameters i.e., V f for 4, 8 and

12 mm material thicknesses, at the speeds of 95, 90 and 91 mm/min, respectively.
The obtained optimum setting for ma and P were found to be the same value for all
material thicknesses, at 500 g/min and 200 MPa, respectively. Table 17 presents
the minimum achieved values of KTA and Ra and maximum MRR for 4, 8 and
12 mm material thicknesses, featuring at 0.7990, 1.283 μm and 297.98 mm3/min;
1.0680, 1.694 μm and 514.97 mm3/min and 1.4480, 1.975 μm and 667.07 mm3/min,
respectively.

An optimisation plot presenting how the variables affected the predicted
responses is shown in Figure 10, detailing the composite desirability for multi-
objective (D) and single-objective optimisation (d). Current variable settings for
the input parameters are presented in the figure, alongside with lower and upper
limits. Figure 10 shows a three-sectioned line graph representing the correlation of
KTA, Ra and MRR against traverse speed (X1), abrasive mass flow rate (X2) and
waterjet pressure (X3).

From the figure, it can be observed that abrasive waterjet contour cutting
responses demonstrate a comparable behaviour against input parameters for all mate-
rial thicknesses. The highest rate of material removal and lowest value of surface
roughness and Kerf taper angle were achieved by employing a rate of 150 mm/min
speed, 500 g/min abrasive mass flow rate, and 300 MPa of waterjet pressure. Increas-
ing water pressure, alongside high velocity abrasive mass flow rate, produces a greater
collision of abrasive particles, generating higher rate of material removal and reducing
surface roughness and kerf taper angle [52].

The surface roughness displayed an incrementing value that ranged from 4–13% as
the rate of traverse speed increased from 90 to 150 mm/min. As the speed increases
per unit of area over time, the kinetic energy containing abrasives gradually decreases,
resulting in greater evidences of rough surfaces [52]. Consequently, RSM optimisation
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Parameters 4 mm 8 mm 12 mm

Solutions

1 2 3 1 2 3 1 2 3

X1 =Vf

(mm/min

95 97 97 90 90 116 91 90 90

X2=ma

(g/min)

500 500 500 500 500 301.737 500 500 500

X3=P

(MPa)

300 300 300 300 300 300 300 300 300

KTA (°) 0.799 0.805 0.805 1.068 1.068 1.330 1.448 1.441 1.441

MRR (mm3/min) 297.98 302.17 302.17 514.97 514.97 537.49 667.07 662.78 662.78

Ra (μm) 1.283 1.291 1.291 1.694 1.694 2.039 1.975 1.970 1.970

Composite Desirability 0.748448 0.748075 0.748075 0.780587 0.780587 0.556566 0.786800 0.786677 0.786677

Table 17.
Solutions for RSM multi-objective optimisation.
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has shown that a lower level of traverse speed can produce a better quality of cut
surface. Additionally, surface roughness in this study shows an increasing value rang-
ing 2–5%, as the waterjet pressure increases and the abrasive mass flow rate from 200
to 300 MPa and 300 to 500 g/min, respectively. In this study, it is confirmed that
augmenting abrasive flow rate and waterjet pressure, up to a specific range, lowers the
value of surface roughness. When higher values of traverse speed are employed, the
material removal exhibits an increasing rate that ranges from 16–20%. In addition,
increasing rate of material removal was achieved with a range of 5–9%, as the rate of
abrasive mass flow and waterjet pressure increased from 200 to 300 MPa and 300 to
500 g/min, respectively. AWJM produces a high level of kinetic energy, driving a
higher level of speed and waterjet pressure alongside with abrasive mass flow rate,
which in turn generates higher cutting area per unit of time and generates a larger
amount of eroded material [53]. Therefore, the rate of material removal is directly
proportional to traverse speed, abrasive mass flow rate and waterjet pressure.
Figure 10 shows that kerf taper angle values increase as the rate of traverse speed
increases from 90 to 150 mm/min. With continuous reduction in the number of
abrasive particles, as the traverse speed increases, the cohesion on metal material
decreases, generating a higher tapering angle [52]. The kerf taper angle in this study
was reduced by 2–7%, as the abrasive mass flow and waterjet pressure were increased
from 200 to 300 MPa and 300 to 500 g/min, respectively. A higher waterjet pressure
alongside with abrasive mass flow rate reinforces the collision of abrasive particles on
the target material, causing the reduction of kerf taper angle [51].

Figure 10.
Response optimisation plot. (a) t = 4 mm (b) t = 8 mm (c) t = 12 mm.
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5. Conclusions

This study focuses on modelling and establishing optimum abrasive waterjet con-
tour cutting parameters that lead to minimum surface roughness, kerf taper angle and
maximum productivity (material removal rate). On the basis of the results achieved
and discussed, the following conclusions are accomplished:

1.The experimental results indicate that abrasive waterjet contour cutting
responses demonstrate similar behaviour against input parameters for straight-
line and curvature profiles. The correlation coefficients of the predictive models
of R2, R2adj and R2pred for surface roughness, kerf taper angle and material
removal rate were found to be in the range of 88.66–99.08%, 82.3–98.86% and
82.3–98.86% respectively. Therefore, the developed multi-linear regression
models are reliable and effective for predicting output responses, where the
percentage errors are at minimum values ranging from �6.59 to 6.71%

2.The results of the ANOVA for Ra. MRR and KTA demonstrate that traverse speed
is the most influencing factor, with percentage contributions ranging from 55.67
to 78.94%. Surface roughness and kerf taper angle decrease as waterjet pressure
and abrasive mass flow rate increase, resulting in reductions ranging from 2–5%
and 2–7%, respectively. Increasing values of traverse speed, waterjet pressure
and abrasive mass flow rate lead to increased rates of material removal, ranging
from 16–20% and 5–9%, respectively.

3.The multi-objective optimization was performed using RSM for optimising
abrasive waterjet contour cutting process parameters applied for 4, 8 and 12 mm
material thicknesses, achieving the highest composite desirability values of
0.748448, 0.780587 and 0.786800, respectively. The optimum settings of
input parameters i.e., Vf for 4, 8 and 12 mm material thickness are 95, 90 and

91 mm/min, respectively. The obtained optimum settings for ma and P were
found to be the same value for all material thicknesses, at 500 g/min and
200 MPa, respectively. The minimum achieved values of KTA and Ra and
maximumMRR for 4, 8 and 12 mmmaterial thickness were 0.7990, 1.283 μm and
297.98 mm3/min; 1.0680, 1.694 μm and 514.97 mm3/min; and 1.4480, 1.975 μm
and 667.07 mm3/min, respectively.

Abbreviations and nomenclature

ht depth of cut (mm)
ma abrasive mass flow rate (g/min)
P water pressure (MPa)
Ra surface roughness (μm)
Vf traverse speed (mm/min)

W kerf width (mm)
W t kerf top width (mm)
Wb kerf bottom width (mm)
t thickness of the material (mm)
AISI austenitic stainless steel
ANOVA analysis of variance
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AWJM abrasive waterjet machining
KTA kerf taper angle (0)
MRR material removal rate (mm3/min)

A. Appendix

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 72.21 0.000 71.07 0.000 64.06 0.000

X2 7.96 0.007 11.57 0.003 3.94 0.013

X3 17.84 0.001 15.52 0.001 30.64 0.001

Error 1.99 1.84 1.36

Total 100.00 100.00 100.00

Table A2.
ANOVA of Ra for t = 8 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 57.23 0.000 58.85 0.000 57.21 0.001

X2 3.44 0.026 5.31 0.002 17.66 0.011

X3 34.59 0.000 33.1 0.000 19.47 0.009

Error 4.74 2.74 3.23 3.23

Total 100.00 100.00 100.00

Table A3.
ANOVA of Ra for t = 12 mm.

Source Ra 1 Ra 2 Ra 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.90 0.001 69.43 0.000 69.39 0.000

X2 5.16 0.067 3.49 0.068 3.77 0.017

X3 30.19 0.002 23.86 0.002 24.09 0.001

Error 4.74 3.23 2.74

Total 100.00 100 100

Table A1.
ANOVA of Ra for t = 4 mm.
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Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 71.14 0.000 70.98 0 75.503 0

X2 4.35 0.023 2.65 0.067 3.345 0.048

X3 22.42 0.002 23.93 0.001 18.688 0.002

Error 2.08 2.44 2.464

Total 100.00 100.00 100.00

Table A4.
ANOVA of MRR for t = 4 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 76.69 0.000 76.12 0.000 70.51 0.000

X2 7.13 0.002 3.62 0.038 0.12 0.751

X3 15.05 0.000 17.98 0.002 24.09 0.005

Error 1.14 2.29 5.27

Total 100.00 100.00 100.00

Table A5.
ANOVA of MRR for t = 8 mm.

Source MRR 1 MRR 2 MRR 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 77.55 0.000 78.94 0.000 73.29 0.000

X2 9.03 0.002 4.13 0.04 4.15 0.028

X3 12.11 0.001 13.3 0.001 20.35 0.001

Error 1.31 3.63 2.21

Total 100.00 100.00 100.00

Table A6.
ANOVA of MRR for t = 12 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 64.21 0.000 58.7 0.000 56.74 0.000

X2 6.75 0.014 6.77 0.017 5.27 0.075

X3 26.6 0.001 31.78 0.001 32.74 0.001

Error 2.45 2.74 5.26

Total 100.00 100.00 100.00

Table A7.
ANOVA of KTA for t = 4 mm.
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Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 59.49 0.001 67.49 0.000 60.95 0.000

X2 11.84 0.015 5.63 0.013 4.42 0.047

X3 26.69 0.002 21.65 0.001 31.42 0.001

Error 1.98 5.24 3.21

Total 100.00 100.00 100.00

Table A8.
ANOVA of KTA for t = 8 mm.

Source KTA 1 KTA 2 KTA 3

Contribution % p-Value Contribution % p-Value Contribution % p-Value

X1 53.33 0.000 70.59 0.000 55.67 0.000

X2 12.65 0.055 0.22 0.245 5.24 0.033

X3 31.40 0.001 25.50 0.000 36.04 0.001

Error 0.63 3.70 3.05

Total 100.00 100.00 100.00

Table A9.
ANOVA of KTA for t = 12 mm.
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