6 research outputs found

    Establishment of ultrasound as a diagnostic aid in the referral of patients with abdominal pain in an emergency department – a pilot study

    No full text
    Liv la Cour Poulsen,1 Emilie Stokholm Bækgaard,1 Per Grosen Istre,1 Thomas Andersen Schmidt,1 Torben Larsen2 1Emergency Department, Copenhagen University Hospital, Holbaek, Denmark; 2Department of Obstetrics and Gynecology, Copenhagen University Hospital, Holbaek, Denmark Purpose: Ultrasonography is a noninvasive, cheap, and fast way of assessing abdominal pain in an emergency department. Many physicians working in emergency departments do not have pre-existing ultrasound experience. The purpose of this study was to investigate the ability of first-year internship doctors to perform a reliable ultrasound examination on patients with abdominal pain in an emergency setting. Materials and methods: This study took place in an emergency department in Denmark. Following a 1-day ultrasound introduction course, three doctors without prior ultrasound experience scanned 45 patients during a 2-month period. The applicability of the examinations was evaluated by subsequent control examination: computed tomography, operation, or ultrasound by a trained radiologist or gynecologist or, in cases where the patient was immediately discharged, by ultrasound image evaluation. Results: In 14 out of 21 patients with a control examination, there was diagnostic agreement between the project ultrasound examination and the control. Image evaluation of all patients showed useful images of the gallbladder, kidneys, liver, abdominal aorta, and urinary bladder, but no useful images for either the pancreas or colon. Conclusion: With only little formal training, it is possible for first-year internship doctors to correctly visualize some abdominal organs with ultrasonography. However, a longer study time frame, including more patients, and an ultrasound course specifically designed for the purpose of use in an emergency department, is needed to enhance the results. Keywords: ultrasound training, emergency medicine, diagnostic imaging, acute abdome

    Inhibition of endothelial NOTCH1 signaling attenuates inflammation by reducing cytokine-mediated histone acetylation at inflammatory enhancers

    No full text
    Objective—Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. Approach and Results—Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA to genomic sites occupied by NOTCH1-RBPJ and that NOTCH1 knockdown reduced H3K27 acetylation at a subset of NF-κB–directed inflammatory enhancers. Conclusions—Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an inflammatory endothelial phenotype

    The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes

    No full text
    International audienceMembrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semiautonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show Josselin Lupette and Eric Maréchal contributed equally with all other contributors
    corecore