2 research outputs found
Scissors modes in triaxial metal clusters
We study the scissors mode (orbital M1 excitations) in small Na clusters,
triaxial metal clusters and and the
close-to-spherical , all described in DFT with detailed ionic
background. The scissors modes built on spin-saturated ground and
spin-polarized isomeric states are analyzed in virtue of both macroscopic
collective and microscopic shell-model treatments. It is shown that the mutual
destruction of Coulomb and the exchange-correlation parts of the residual
interaction makes the collective shift small and the net effect can depend on
details of the actual excited state. The crosstalk with dipole and spin-dipole
modes is studied in detail. In particular, a strong crosstalk with spin-dipole
negative-parity mode is found in the case of spin-polarized states. Triaxiality
and ionic structure considerably complicate the scissors response, mainly at
expense of stronger fragmentation of the strength. Nevertheless, even in these
complicated cases the scissors mode is mainly determined by the global
deformation. The detailed ionic structure destroys the spherical symmetry and
can cause finite M1 response (transverse optical mode) even in clusters with
zero global deformation. But its strength turns out to be much smaller than for
the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure
