2 research outputs found

    History Shaped the Geographic Distribution of Genomic Admixture on the Island of Puerto Rico

    Get PDF
    Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations

    Molecular Information Technology

    No full text
    Molecular materials are endowed with unique properties of unrivaled potential for high density integration of computing systems. Present applications of molecules range from organic semiconductor materials for low-cost circuits to genetically modified proteins for commercial imaging equipment. To fully realize the potential of molecules in computation, information processing concepts that relinquish narrow prescriptive control over elementary structures and functions are needed, and self-organizing architectures have to be developed. Investigations into qualitatively new concepts of information processing are underway in the areas of reaction-diffusion computing, self-assembly computing, and conformation-based computing. Molecular computing is best considered not as a competitor for conventional computing, but as an opportunity for new applications. Microrobotics and bioimmersive computing are among the domains likely to benefit from advances in molecular computing. Progress will depend on both novel computing concepts and innovations in materials. This article reviews current directions in the use of bulk and single molecules for information processing
    corecore