83 research outputs found

    Identification and characterization of kidney glomerulus-associated genes and proteins

    Get PDF
    The kidney glomerulus is a micro-organ comprised of a molecular filtration barrier that prevents the loss of blood proteins into the primary filtrate. This function is dependent on the coordination of its three constituent layers: the endothelium, the glomerular basement membrane and the podocytes. While each of the three layers contributes to the permselectivity of the glomerular filtration barrier, the podocyte forms the final barrier to filtration. Many glomerulus-enriched proteins have been implicated in the pathogenesis of renal diseases. We have identified over 300 glomerulus- upregulated genes using expressed sequence tag profiling and microarray analysis, in order to discover new genes with important roles in glomerular filtration. Two of the proteins were characterized further in this study. Plekhh2 is an intracellular protein with two PH, MyTH and FERM domains, highly enriched in the podocytes and testes, for which no function has previously been ascribed. We studied by immunoelectron microscopy Plekhh2 distribution in the human glomerular filter and found that its expression was reduced in focal segmental glomerulosclerosis. Heterologously expressed Plekhh2 localizes to the peripheral regions of lamellipodia in cultured podocytes and its PH1 domain contains a PIP3 consensus-binding site. The N-terminal half of Plekkh2 is not required for targeting to lamellipodia but it rather mediates Plekhh2 self-association. By yeast two-hybrid analysis we identified two Plekhh2 interacting partners: Hic-5, a focal adhesion protein, and actin. Plekhh2 and Hic-5 coprecipitate and colocalize at the soles of podocyte foot processes in situ and endogenous Hic-5 partially relocalizes from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. We also found that Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Plekhh2, Hic5 and actin show parallel expression changes in two mouse models of glomerular damage. Schip1 is a coiled-coil protein previously discovered through association studies with schwannomin (Nf2, merlin) in the mouse brain, shown to be responsive to PDGFβ stimulation. We have identified Schip1 as a highly enriched kidney glomerulus transcript in the podocytes, and investigated its functions in this context. We show that Schip1 promotes migration of cells in response to PDGFβ stimulation and accumulation of cortical actin. In cultured podocytes, Schip1 localizes to lamellipodia periphery, closely overlapping the cortical actin. Actin disassembly by latrunculin A treatment, could not be prevented by Schip1 expression, but the protein colocalized to remaining actin fibers. Strikingly, by yeast two-hybrid, coprecipitations and FRET we discovered that Schip1 interacts with Nherf2/ezrin. This is a well characterized podocyte protein complex, forming a supporting net for docking actin filaments in the foot processes by binding to podocalyxin and/or PDGFrβ cytoplasmic tails. Furthermore, we show by comparative microarray studies, that the expression of Schip1 and its associated proteins is affected in a similar manner in several mouse models of human glomerular diseases. Our experiments suggest that both Plekhh2 and Schip1 are involved in actin assembly dynamics at the leading edge of cellular extensions. We propose that these proteins are associated to the complex podocyte foot process actin network. The discovery and characterization of novel glomerular genes and proteins presented in this thesis, has contributed to our understanding of glomerular biology and pathophysiology of renal diseases

    Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events

    Get PDF
    AIMS: Processes in the development of atherosclerotic lesions can lead to plaque rupture or erosion, which can in turn elicit myocardial infarction or ischaemic stroke. The aims of this study were to determine whether Toll-like receptor 7 (TLR7) gene expression levels influence patient outcome and to explore the mechanisms linked to TLR7 expression in atherosclerosis. METHODS AND RESULTS: Atherosclerotic plaques were removed by carotid endarterectomy (CEA) and subjected to gene array expression analysis (n = 123). Increased levels of TLR7 transcript in the plaques were associated with better outcome in a follow-up study over a maximum of 8 years. Patients with higher TLR7 transcript levels had a lower risk of experiencing major cardiovascular and cerebrovascular events (MACCE) during the follow-up period after CEA (hazard ratio: 2.38, P = 0.012, 95% CI 1.21–4.67). TLR7 was expressed in all plaques by T cells, macrophages and endothelial cells in capillaries, as shown by immunohistochemistry. In short-term tissue cultures, ex vivo treatment of plaques with the TLR7 ligand imiquimod elicited dose-dependent secretion of IL-10, TNF-α, GM-CSF, and IL-12/IL-23p40. This secretion was blocked with a TLR7 inhibitor. Immunofluorescent tissue analysis after TLR7 stimulation showed IL-10 expression in T cells, macrophages and vascular smooth muscle cells. TLR7 mRNA levels in the plaques were correlated with IL-10 receptor (r = 0.4031, P < 0.0001) and GM-CSF receptor A (r = 0.4354, P < 0.0001) transcripts. CONCLUSION: These findings demonstrate that TLR7 is abundantly expressed in human atherosclerotic plaques. TLR7 ligation elicits the secretion of pro-inflammatory and anti-inflammatory cytokines, and high TLR7 expression in plaques is associated with better patient outcome, suggesting that TLR7 is a potential therapeutic target for prevention of complications of atherosclerosis

    Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques

    Get PDF
    Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics

    Functional Analysis of a Novel Genome-Wide Association Study Signal in <i>SMAD3</i> That Confers Protection From Coronary Artery Disease

    Get PDF
    Objective— A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3 , rs56062135C&gt;T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease–associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. Approach and Results— By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C&gt;T (D′, 0.97; r 2 , 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity ( P &lt;0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent ( P &lt;0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. Conclusions— The coronary artery disease–associated rs17293632C&gt;T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. </jats:sec

    Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases

    Get PDF
    Genome-wide association studies have identified multiple novel genomic loci associated with vascular diseases. Many of these loci are common non-coding variants that affect the expression of disease-relevant genes within coronary vascular cells. To identify such genes on a genome-wide level, we performed deep transcriptomic analysis of genotyped primary human coronary artery smooth muscle cells (HCASMCs) and coronary endothelial cells (HCAECs) from the same subjects, including splicing Quantitative Trait Loci (sQTL), allele-specific expression (ASE), and colocalization analyses. We identified sQTLs for TARS2, YAP1, CFDP1, and STAT6 in HCASMCs and HCAECs, and 233 ASE genes, a subset of which are also GTEx eGenes in arterial tissues. Colocalization of GWAS association signals for coronary artery disease (CAD), migraine, stroke and abdominal aortic aneurysm with GTEx eGenes in aorta, coronary artery and tibial artery discovered novel candidate risk genes for these diseases. At the CAD and stroke locus tagged by rs2107595 we demonstrate colocalization with expression of the proximal gene TWIST1. We show that disrupting the rs2107595 locus alters TWIST1 expression and that the risk allele has increased binding of the NOTCH signaling protein RBPJ. Finally, we provide data that TWIST1 expression influences vascular SMC phenotypes, including proliferation and calcification, as a potential mechanism supporting a role for TWIST1 in CAD

    Nexilin/NEXN controls actin polymerization in smooth muscle and is regulated by myocardin family coactivators and YAP

    No full text
    Nexilin, encoded by the NEXN gene, is expressed in striated muscle and localizes to Z-discs, influencing mechanical stability. We examined Nexilin/NEXN in smooth muscle cells (SMCs), and addressed if Nexilin localizes to dense bodies and dense bands and whether it is regulated by actin-controlled coactivators from the MRTF (MYOCD, MKL1, MKL2) and YAP/TAZ (YAP1 and WWTR1) families. NEXN expression in SMCs was comparable to that in striated muscles. Immunofluorescence and immunoelectron microscopy suggested that Nexilin localizes to dense bodies and dense bands. Correlations at the mRNA level suggested that NEXN expression might be controlled by actin polymerization. Depolymerization of actin using Latrunculin B repressed the NEXN mRNA and protein in bladder and coronary artery SMCs. Overexpression and knockdown supported involvement of both YAP/TAZ and MRTFs in the transcriptional control of NEXN. YAP/TAZ and MRTFs appeared equally important in bladder SMCs, whereas MRTFs dominated in vascular SMCs. Expression of NEXN was moreover reduced in situations of SMC phenotypic modulation in vivo. The proximal promoter of NEXN conferred control by MRTF-A/MKL1 and MYOCD. NEXN silencing reduced actin polymerization and cell migration, as well as SMC marker expression. NEXN targeting by actin-controlled coactivators thus amplifies SMC differentiation through the actin cytoskeleton, probably via dense bodies and dense bands

    Expression of endothelin type B receptors (EDNRB) on smooth muscle cells is controlled by MKL2, ternary complex factors, and actin dynamics

    No full text
    The endothelin type B receptor (ETB or EDNRB) is highly plastic and is upregulated in smooth muscle cells (SMCs) by arterial injury and following organ culture in vitro. We hypothesized that this transcriptional plasticity may arise, in part, because EDNRB is controlled by a balance of transcriptional inputs from myocardin-related transcription factors (MRTFs) and ternary complex factors (TCFs). We found significant positive correlations between the TCFs ELK3 and FLI1 versus EDNRB in human arteries. The MRTF MKL2 also correlated with EDNRB. Overexpression of ELK3, FLI1, and MKL2 in human coronary artery SMCs promoted expression of EDNRB, and the effect of MKL2 was antagonized by myocardin (MYOCD), which also correlated negatively with EDNRB at the tissue level. Silencing of MKL2 reduced basal EDNRB expression, but depolymerization of actin using latrun-culin B (LatB) or overexpression of constitutively active cofilin, as well as treatment with the Rho-associated kinase (ROCK) inhibitor Y27632, increased EDNRB in a MEK/ERK-dependent fashion. Tran-script-specific primers indicated that the second EDNRB transcript (EDNRB_2) was targeted, but this promoter was largely unresponsive to LatB and was inhibited rather than stimulated by MKL2 and FLI1, suggesting distant control elements or an indirect effect. LatB also reduced expression of endothelin-1, but supplementation experiments argued that this was not the cause of EDNRB induction. EDNRB finally changed in parallel with ELK3 and FLI1 in rat and human carotid artery lesions. These studies implicate the actin cytoskeleton and ELK3, FLI1, and MKL2 in the transcriptional control of EDNRB and increase our understanding of the plasticity of this receptor

    Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling

    No full text
    Aims: Long non-coding RNAs (lncRNAs) have been shown to regulate numerous processes in the human genome, but the function of these transcripts in vascular aging is largely unknown. We aim to characterize the expression of lncRNAs in endothelial aging and analyse the function of the highly conserved lncRNA H19. Methods and results: H19 was downregulated in endothelium of aged mice. In human, atherosclerotic plaques H19 was mainly expressed by endothelial cells and H19 was significantly reduced in comparison to healthy carotid artery biopsies. Loss of H19 led to an upregulation of p16 and p21, reduced proliferation and increased senescence in vitro. Depletion of H19 in aortic rings of young mice inhibited sprouting capacity. We generated endothelial-specific inducible H19 deficient mice (H19iEC-KO), resulting in increased systolic blood pressure compared with control littermates (Ctrl). These H19iEC-KO and Ctrl mice were subjected to hindlimb ischaemia, which showed reduced capillary density in H19iEC-KO mice. Mechanistically, exon array analysis revealed an involvement of H19 in IL-6 signalling. Accordingly, intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were upregulated upon H19 depletion. A luciferase reporter screen for differential transcription factor activity revealed STAT3 as being induced upon H19 depletion and repressed after H19 overexpression. Furthermore, depletion of H19 increased the phosphorylation of STAT3 at TYR705 and pharmacological inhibition of STAT3 activation abolished the effects of H19 silencing on p21 and vascular cell adhesion molecule 1 expression as well as proliferation. Conclusion: These data reveal a pivotal role for the lncRNA H19 in controlling endothelial cell aging
    • …
    corecore