1 research outputs found

    Oxygen Vacancy-Reinforced Water-Assisted Proton Hopping for Enhanced Catalytic Hydrogenation

    No full text
    Water-assisted proton hopping (WAPH) has been intensively investigated for promoting the performance of metal oxide-supported catalysts for hydrogenation. However, the effects of the structure of the metal oxide support on WAPH have received little attention. Herein, we construct oxygen vacancy-bearing, MoO3–x-supported Pd nanoparticle catalysts (Pd/MoO3–x-R), where the oxygen vacancies can promote WAPH, thereby facilitating catalytic hydrogenation. The experimental results and theoretical calculations show that the oxygen vacancies favor the adsorption of water, which assists the proton hopping across the surface of the metal oxide, enhancing the catalytic hydrogenation. Our finding will provide a potential approach to the design of metal oxide-supported catalysts for hydrogenation
    corecore