33 research outputs found

    AMF, phylogeny, and succession: specificity of response to mycorrhizal fungi increases for late-successional plants

    Get PDF
    Arbuscular mycorrhizal (AM) fungal communities are important to plant community productivity and diversity; however, the importance of AM fungal composition to community dynamics remains largely unknown. Specificity of plant response to different AM fungal species is a prerequisite for AM fungal composition to have an effect on plant community dynamics. We test determinants of specificity of plant response to AM fungi across six early- and six late-successional tallgrass prairie plants by growing them with one of seven different AM fungal species and a non-inoculated control. We found that late-successional species were more responsive, and demonstrated greater specificity, toward individual AM fungal taxa than early-successional species. There was no phylogenetic signal for plant responsiveness or specificity of plant response. Phylogenetic multiple regressions indicated that successional stage, plant growth rate, and overall responsiveness were significant predictors of fungal specificity independent of shared phylogeny. These results suggest that plant response to mycorrhizal fungi is evolutionarily labile and coevolves with plant life history. Our results also suggest that AM fungal community dynamics can be particularly important for the establishment and subsequent dynamics of late-successional plants

    Native Microbes Amplify Native Seedling Establishment and Diversity While Inhibiting a Non-Native Grass

    Get PDF
    Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling biomass and diversity was assessed by seeding pots with both native prairie seeds and a non-native grass that commonly invades US grassland restorations, Setaria faberi. Soil in the pots was inoculated with whole soil collections from ex-arable land, late successional arbuscular mycorrhizal (AM) fungi isolated from a nearby tallgrass prairie, with both prairie AM fungi and ex-arable whole soil, or with a sterile soil (control). We hypothesized (1) late successional plants would benefit from native AM fungi, (2) that non-native plants would outcompete native plants in ex-arable soils, and (3) early successional plants would be unresponsive to microbes. Overall, native plant abundance, late successional plant abundance, and total diversity were greatest in the native AM fungi+ ex-arable soil treatment. These increases led to decreased abundance of the non-native grass S. faberi. These results highlight the importance of late successional native microbes on native seed establishment and demonstrate that microbes can be harnessed to improve both plant community diversity and resistance to invasion during the nascent stages of restoration

    Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness

    Get PDF
    Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species’ sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species’ reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history

    Benefits of Native Mycorrhizal Amendments to Perennial Agroecosystems Increases with Field Inoculation Density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Perennial polyculture cropping systems are a novel agroecological approach used to mirror some of the ecological benefits provided by native perennial ecosystems including increased carbon and nitrogen storage, more stable soils, and reduced anthropogenic input. Plants selected for perennial agroecosystems are often closely related to native perennials known to be highly dependent on microbiome biota, such as arbuscular mycorrhizal (AM) fungi. However, most plantings take place in highly disturbed soils where tillage and chemical use may have rendered the AM fungal communities less abundant and ineffective. Studies of mycorrhizal amendments include inoculation densities of 2–10,000 kg of inocula per hectare. These studies report variable results that may depend on inocula volume, composition, or nativeness. Here, we test the response of 19 crop plant species to a native mycorrhizal fungal community in a greenhouse and field experiment. In our field experiment, we chose eight different densities of AM fungal amendment, ranging from 0 to 8192 kg/hectare, representing conventional agricultural practices (no AM fungi addition), commercial product density recommendations, and higher densities more typical of past scientific investigation. We found that plant species that benefited from native mycorrhizal inocula in the greenhouse also benefited from inoculation in the field polyculture planting. However, the densities of mycorrhizal inocula suggested on commercial mycorrhizal products were ineffective, and higher concentrations were required to detect significant benefit plant growth and survival. These data suggest that higher concentrations of mycorrhizal amendment or perhaps alternative distribution methods may be required to utilize native mycorrhizal amendment in agroecology systems.Perennial Agricultural ProjectNational Science Foundation (DEB-1556664, DEB-1738041, OIA 1656006)USDA (grant 2016-67011-25166

    Abiotic and biotic context dependency of perennial crop yield

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Perennial crops in agricultural systems can increase sustainability and the magnitude of ecosystem services, but yield may depend upon biotic context, including soil mutualists, pathogens and cropping diversity. These biotic factors themselves may interact with abiotic factors such as drought. We tested whether perennial crop yield depended on soil microbes, water availability and crop diversity by testing monocultures and mixtures of three perennial crop species: a novel perennial grain (intermediate wheatgrass—Thinopyrum intermedium-- that produces the perennial grain Kernza¼), a potential perennial oilseed crop (Silphium intregrifolium), and alfalfa (Medicago sativa). Perennial crop performance depended upon both water regime and the presence of living soil, most likely the arbuscular mycorrhizal (AM) fungi in the whole soil inoculum from a long term perennial monoculture and from an undisturbed native remnant prairie. Specifically, both Silphium and alfalfa strongly benefited from AM fungi. The presence of native prairie AM fungi had a greater benefit to Silphium in dry pots and alfalfa in wet pots than AM fungi present in the perennial monoculture soil. Kernza did not benefit from AM fungi. Crop mixtures that included Kernza overyielded, but overyielding depended upon inoculation. Specifically, mixtures with Kernza overyielded most strongly in sterile soil as Kernza compensated for poor growth of Silphium and alfalfa. This study identifies the importance of soil biota and the context dependence of benefits of native microbes and the overyielding of mixtures in perennial crops.Perennial Agricultural Project sponsored by the Malone Family Land Preservation FoundationNational Science Foundation (DEB-1556664, DEB- 1738041, OIA 1656006

    Arbuscular Mycorrhizal Fungi Taxa Show Variable Patterns of Micro-Scale Dispersal in Prairie Restorations

    Get PDF
    Human land use disturbance is a major contributor to the loss of natural plant communities, and this is particularly true in areas used for agriculture, such as the Midwestern tallgrass prairies of the United States. Previous work has shown that arbuscular mycorrhizal fungi (AMF) additions can increase native plant survival and success in plant community restorations, but the dispersal of AMF in these systems is poorly understood. In this study, we examined the dispersal of AMF taxa inoculated into four tallgrass prairie restorations. At each site, we inoculated native plant species with greenhouse-cultured native AMF taxa or whole soil collected from a nearby unplowed prairie. We monitored AMF dispersal, AMF biomass, plant growth, and plant community composition, at different distances from inoculation. In two sites, we assessed the role of plant hosts in dispersal, by placing known AMF hosts in a “bridge” and “island” pattern on either side of the inoculation points. We found that AMF taxa differ in their dispersal ability, with some taxa spreading to 2-m in the first year and others remaining closer to the inoculation point. We also found evidence that AMF spread altered non-inoculated neighboring plant growth and community composition in certain sites. These results represent the most comprehensive attempt to date to evaluate AMF spread

    Sensitivity to AMF species is greater in late‐successional than early‐successional native or nonnative grassland plants

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Sensitivity of plant species to individual arbuscular mycorrhizal (AM) fungal species is of primary importance to understanding the role of AM fungal diversity and composition in plant ecology. Currently, we do not have a predictive framework for understanding which plant species are sensitive to different AM fungal species. In two greenhouse studies, we tested for differences in plant sensitivity to different AM fungal species and mycorrhizal responsiveness across 17 grassland plant species of North America that varied in successional stage, native status, and plant family by growing plants with different AM fungal treatments including eight single AM fungal isolates, diverse mixtures of AM fungi, and non‐inoculated controls. We found that late successional grassland plant species were highly responsive to AM fungi and exhibited stronger sensitivity in their response to individual AM fungal taxa compared to nonnative or early successional native grassland plant species. We confirmed these results using a meta‐analysis that included 13 experiments, 37 plant species, and 40 fungal isolates (from nine publications and two greenhouse experiments presented herein). Mycorrhizal responsiveness and sensitivity of response (i.e., variation in plant biomass response to different AM fungal taxa) did not differ by the source of fungal inocula (i.e., local or not local) or plant family. Sensitivity of plant response to AM fungal species was consistently correlated with the average mycorrhizal response of that plant species. This study identifies that AM fungal identity is more important to the growth of late successional plant species than early successional or nonnative plant species, thereby predicting that AM fungal composition will be more important to plant community dynamics in late successional communities than in early successional or invaded plant communities

    nurse plant growth

    No full text
    lf/ht 1 are initial measurements lf/ h2 is at the time of planting lf/ht3 are at the end of year 2014 and lf/ht4 are at the end of the year 2015 (Second year.

    ccsforSASxl

    No full text
    plot average mean c, fqi and weighted mean c and fq

    megasheetforSAScorrectheadsmarch1516

    No full text
    this has the plot average richness among different categories, as well as the summed abundance among different categorie
    corecore