198 research outputs found

    Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana 'Guijiao 9' in response to Fusarium wilt.

    Get PDF
    Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases in bananas resulting in significant loss of Cavendish bananas production worldwide. Here we show the agronomic traits and the resistance of 'Guijiao 9' in the field trials from 2012 to 2017. And then we dissect and compare the transcriptome response from these two cultivars (cv. 'Guijiao 9' and cv. Williams) in an attempt to understand the molecular basis that contribute to the enhanced Foc tropical race 4 (Foc-TR4) resistance. 'Guijiao 9' is a Cavendish cultivar with strong resistance to Foc-TR4, which was reflected in a lower disease severity and incidence in glasshouse and field trails, when compared to the susceptible cultivar Williams. Gene expression profiles of 'Guijiao 9' and Williams were captured by performing RNA-Seq analysis on 16 biological samples collected over a six day period post inoculation with Foc-TR4. Transcriptional reprogramming in response to Foc-TR4 was detected in both genotypes but the response was more drastic in 'Guijiao 9' than in Williams. Specific genes involved in plant-pathogen interaction and defense signaling including MAPK, calcium, salicylic acid, jasmonic acid and ethylene pathways were analyzed and compared between 'Guijiao 9' and Williams. Genes associated with defense-related metabolites synthesis such as NB-LRR proteins, calmodulin-binding protein and phenylpropanoids biosynthesis genes were significantly up-regulated in 'Guijiao 9' resistant to Foc-TR4 infection. Taken together, this study highlights the important roles of plant hormone regulation and defense gene activation in mediating resistance in 'Guijiao 9'

    Genetic Analysis of KRT9 Gene Revealed Previously Known Mutations and Genotype-Phenotype Correlations in Epidermolytic Palmoplantar Keratoderma

    Get PDF
    Epidermolytic palmoplantar keratoderma (EPPK, OMIM 144200) is an autosomal dominant inherited disease, clinically characterized by diffuse yellowish thickening of the skin on the palms and soles, usually with erythematous borders developing during the first weeks or months after birth. Pathogenesis of EPPK is determined by mutations in the keratin gene (KRT9). Thirty three mutations in the KRT9 gene from 100 EPPK families have been identified. Among these, 23 mutations are located in the 1A region (a mutation hot spot region), 7 are located in the 2B region, and the remaining 3 are synonymous mutations. In this study, three heterozygous mutations (p.N161S, p.R163W, and p.R163Q), located in regions of the gene encoding the conserved central a-helix rod domain, were detected in the KRT9 gene of the three large Chinese families. This study confirms that codon 163 (48 of 100 cases) is a hot spot mutation site for KRT9. Additional findings identified p.N161S (4%) and p.R163W (4%) as potential hot spot mutations for EPPK associated with knuckle pads, and p.R163Q (15 of 100 cases) as the hot spot mutation of EPPK not occurring in combination with knuckle pads. In conjunction with future studies, this research may help lay the foundation for genetics counseling, prenatal diagnosis and clinical treatment of EPPK

    Case report: Gene mutation analysis and skin imaging of isolated café-au-lait macules

    Get PDF
    Background: Café-au-lait macules (CALMs) are common birthmarks associated with several genetic syndromes, such as neurofibromatosis type 1 (NF1). Isolated CALMs are defined as multiple café-au-lait macules in patients without any other sign of NF1. Typical CALMs can have predictive significance for NF1, and non-invasive techniques can provide more accurate results for judging whether café-au-lait spots are typical.Objectives: The study aimed to investigate gene mutations in six Chinese Han pedigrees of isolated CALMs and summarize the characteristics of CALMs under dermoscopy and reflectance confocal microscopy (RCM).Methods: In this study, we used Sanger sequencing to test for genetic mutations in six families and whole exome sequencing (WES) in two families. We used dermoscopy and RCM to describe the imaging characteristics of CALMs.Results: In this study, we tested six families for genetic mutations, and two mutations were identified as novel mutations. The first family identified [NC_000017.11(NM_001042492.2):c.7355G>A]. The second family identified [NC_000017.11(NM_001042492.2):c.2739_2740del]. According to genotype-phenotype correlation analyses, proband with frameshift mutation tended to have a larger number of CALMs and a higher rate of having atypical CALMs. Dermoscopy showed uniform and consistent tan-pigmented network patches with poorly defined margins with a lighter color around the hair follicles. Under RCM, the appearance of NF1 comprised the increased pigment granules in the basal layer and significantly increased refraction.Conclusion: A new heterozygous mutation and a new frameshift mutation of NF1 were reported. This article can assist in summarizing the properties of dermoscopy and RCM with CALMs

    Identification of novel immune-related targets mediating disease progression in acute pancreatitis

    Get PDF
    IntroductionAcute pancreatitis (AP) is an inflammatory disease with very poor outcomes. However, the order of induction and coordinated interactions of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) and the potential mechanisms in AP are still unclear.MethodsAn integrative analysis was performed based on transcripts of blood from patients with different severity levels of AP (GSE194331), as well as impaired lung (GSE151572), liver (GSE151927) and pancreas (GSE65146) samples from an AP experimental model to identify inflammatory signals and immune response-associated susceptibility genes. An AP animal model was established in wild-type (WT) mice and Tlr2-deficient mice by repeated intraperitoneal injection of cerulein. Serum lipase and amylase, pancreas impairment and neutrophil infiltration were evaluated to assess the effects of Tlr2 in vivo.ResultsThe numbers of anti-inflammatory response-related cells, such as M2 macrophages (P = 3.2 × 10–3), were increased with worsening AP progression, while the numbers of pro-inflammatory response-related cells, such as neutrophils (P = 3.0 × 10–8), also increased. Then, 10 immune-related AP susceptibility genes (SOSC3, ITGAM, CAMP, FPR1, IL1R1, TLR2, S100A8/9, HK3 and MMP9) were identified. Finally, compared with WT mice, Tlr2-deficient mice exhibited not only significantly reduced serum lipase and amylase levels after cerulein induction but also alleviated pancreatic inflammation and neutrophil accumulation.DiscussionIn summary, we discovered SIRS and CARS were stimulated in parallel, not activated consecutively. In addition, among the novel susceptibility genes, TLR2might be a novel therapeutic target that mediates dysregulation of inflammatory responses during AP progression
    corecore