3 research outputs found

    Active Sensing System with In Situ Adjustable Sensor Morphology

    Get PDF
    <div><p>Background</p><p>Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements.</p> <p>Methodology</p><p>This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. </p> <p>Conclusions/Significance</p><p>The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. </p> </div

    Different physical interactions and sensing characteristics enabled by adjusting the sensor morphology, and purposive motion, in situ.

    No full text
    <p>(a) model of the physical interaction for discriminating the softness of the target object (b) corresponding sensing characteristics, i.e. range and sensitivity (c) model of the physical interaction for discriminating the temperature of the object (d) the corresponding sensing characteristics (note: the standard deviation for temperature sensing range is divided by two for the sake of clarity).</p

    Hardware and software implementation of the proposed concept.

    No full text
    <p>(a) Complete workspace of the experiment which includes a robot manipulator equipped with HMA handling units on its end effector (b) The robot’s end effector which is composed of a solid HMA block which is fed to HMA supplier. Fabricated HMA units can be connected to HMA connector. A camera is mounted to perform visual processing tasks during sensing. (c) Software implementation of the proposed approach which is composed of two main parts: the in-situ adjustment of the sensor morphology, and the active sensing via motion (d) Flowchart showing the visual processing algorithm used for softness and temperature case studies. </p
    corecore