134 research outputs found

    Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut (Castanea mollissima)

    Get PDF
    The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development

    13.4 % Efficiency from All-Small-Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions

    Get PDF
    How to simultaneously achieve both high open-circuit voltage (Voc) and high short-circuit current density (Jsc) is a big challenge for realising high power conversion efficiency (PCE) in all-small-molecule organic solar cells (all-SM OSCs). Herein, a novel small molecule (SM)-donor, namely FYSM−SiCl, with trialkylsilyl and chlorine substitutions was designed and synthesized. Compared to the original SM-donor FYSM−H, FYSM−Si with trialkylsilyl substitution showed a decreased crystallinity and lower highest occupied molecular orbital (HOMO) level, while FYSM−SiCl had an improved crystallinity, more ordered packing arrangement, significantly lower HOMO level, and predominant “face-on” orientation. Matched with a SM-acceptor Y6, the FYSM−SiCl-based all-SM OSCs exhibited both high Voc of 0.85 V and high Jsc of 23.7 mA cm−2, which is rare for all-SM OSCs and could be attributed to the low HOMO level of FYSM−SiCl donor and the delicate balance between high crystallinity and suitable blend morphology. As a result, FYSM−SiCl achieved a high PCE of 13.4 % in all-SM OSCs, which was much higher than those of the FYSM−H- (10.9 %) and FYSM−Si-based devices (12.2 %). This work demonstrated a promising method for the design of efficient SM-donors by a side-chain engineering strategy via the introduction of trialkylsilyl and chlorine substitutions

    Transcriptome analysis of differential sugar accumulation in the developing embryo of contrasting two Castanea mollissima cultivars

    Get PDF
    Chinese chestnut (Castanea mollissima) is an important nut tree species, and its embryo is rich in sugar. We combined metabolomic and transcriptomic data to analyze metabolites and genes related to sugar in two Chinese chestnut cultivars at 60, 70, 80, 90 and 100 days after flowering (DAF). The soluble sugar content of high-sugar cultivar at maturity is 1.5 times that of low-sugar cultivar. Thirty sugar metabolites were identified in embryo, with the most dominant being sucrose. Analysis of the gene expression patterns revealed that the high-sugar cultivar promoted the conversion of starch to sucrose by up-regulating genes related to starch degradation and sucrose synthesis at 90-100 DAF. It also strongly increased the enzyme activity of SUS-synthetic, which may promote sucrose synthesis. Gene co-expression network analysis showed that ABA and peroxide were related to starch decomposition during Chinese chestnut ripening. Our study analyzed the composition and molecular synthesis mechanism of sugar in Chinese chestnut embryos, and provided a new insight into the regulation pattern of high sugar accumulation in Chinese chestnut nuts

    Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury

    Get PDF
    BackgroundMicrovascular complications, such as diabetic retinopathy (DR) and diabetic nephropathy (DN), and macrovascular complications, referring to atherosclerosis (AS), are the main complications of diabetes. Blindness or fatal microvascular diseases are considered to be identified earlier than fatal macrovascular complications. Exploring the intrinsic relationship between microvascular and macrovascular complications and the hub of pathogenesis is of vital importance for prolonging the life span of patients with diabetes and improving the quality of life.Materials and methodsThe expression profiles of GSE28829, GSE30529, GSE146615 and GSE134998 were downloaded from the Gene Expression Omnibus database, which contained 29 atherosclerotic plaque samples, including 16 AS samples and 13 normal controls; 22 renal glomeruli and tubules samples from diabetes nephropathy including 12 DN samples and 10 normal controls; 73 lymphoblastoid cell line samples, including 52 DR samples and 21 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques including GSEA analysis, GO-KEGG functional clustering by R (version 4.0.5), PPI analysis by Cytoscape (version 3.8.2) and String database, miRNA analysis by Diana database, and hub genes analysis by Metascape database. The drug sensitivity of characteristic DEGs was analyzed.ResultA total of 3709, 4185 and 8086 DEGs were recognized in AS, DN, DR, respectively, with 1820, 1666, 888 upregulated and 1889, 2519, 7198 downregulated. GO and KEGG pathway analyses of DEGs and GSEA analysis of common differential genes demonstrated that these significant sites focused primarily on inflammation-oxidative stress and immune regulation pathways. PPI networks show the connection and regulation on top-250 significant sites of AS, DN, DR. MiRNA analysis explored the non-coding RNA upstream regulation network and significant pathway in AS, DN, DR. The joint analysis of multiple diseases shows the common influenced pathways of AS, DN, DR and explored the interaction between top-1000 DEGs at the same time.ConclusionIn the microvascular and macrovascular complications of diabetes, immune-mediated inflammatory response, chronic inflammation caused by endothelial cell activation and oxidative stress are the three links linking atherosclerosis, diabetes retinopathy and diabetes nephropathy together. Our study has clarified the intrinsic relationship and common tissue damage mechanism of microcirculation and circulatory system complications in diabetes, and explored the mechanism center of these two vascular complications. It has far-reaching clinical and social value for reducing the incidence of fatal events and early controlling the progress of disabling and fatal circulatory complications in diabetes

    Magnon-mediated interlayer coupling in an all-antiferromagnetic junction

    Full text link
    The interlayer coupling mediated by fermions in ferromagnets brings about parallel and anti-parallel magnetization orientations of two magnetic layers, resulting in the giant magnetoresistance, which forms the foundation in spintronics and accelerates the development of information technology. However, the interlayer coupling mediated by another kind of quasi-particle, boson, is still lacking. Here we demonstrate such a static interlayer coupling at room temperature in an antiferromagnetic junction Fe2O3/Cr2O3/Fe2O3, where the two antiferromagnetic Fe2O3 layers are functional materials and the antiferromagnetic Cr2O3 layer serves as a spacer. The N\'eel vectors in the top and bottom Fe2O3 are strongly orthogonally coupled, which is bridged by a typical bosonic excitation (magnon) in the Cr2O3 spacer. Such an orthogonally coupling exceeds the category of traditional collinear interlayer coupling via fermions in ground state, reflecting the fluctuating nature of the magnons, as supported by our magnon quantum well model. Besides the fundamental significance on the quasi-particle-mediated interaction, the strong coupling in an antiferromagnetic magnon junction makes it a realistic candidate for practical antiferromagnetic spintronics and magnonics with ultrahigh-density integration.Comment: 19 pages, 4 figure

    Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan

    Get PDF
    National Natural Science Foundation of China [40810069004]; Xiamen University [211-III]; National Science Council of Taiwan [NSC 98-2621-M-110-001-MY3]; "Aim for the Top" University Program of TaiwanThe role of hydrothermal vents as either a source or a sink for chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) in the oceans is unknown, since DOM absorption and fluorescence have not been reported for submarine hydrothermal vents. Water samples were collected from two shallow submarine hydrothermal vents off NE Taiwan, the white vent and the yellow vent, during two cruises in August, 2010. Absorption and excitation-emission-matrix fluorescence spectroscopy were used to characterize the optical properties of DOM from such extremely special environments. The absorption coefficients at wavelength 300 nm (a(300)) were much higher at the white vent mouth and 1 m below it (2.52 +/- 0.88 m(-1)) than in the background (0.34 +/- 0.12 m(-1)). This indicated that the white vent was a source of CDOM for seawater. Three fluorescent components were identified using parallel factor analysis: humic-like C1, tyrosine-like C3, and C2 as a combination of tryptophan-like and marine humic-like components. Both C1 and C3 (but not C2) had their highest fluorescence intensity at the white vent mouth and 1 m below it, suggesting the role of the vent as a source for both humic-like and tyrosine-like DOM. Samples from the yellow vent mouth also had a higher 0300 than the ambient seawater in our first cruise, but had fluorescence intensities of C(1-3) similar to the ambient seawater. Overall, the low humification index (HIX: 1.40 +/- 0.30) and the high autochthonous index (BIX: 1.27 +/- 0.63) indicated that the DOM likely had low humic contents and was mainly autochthonous of biological or bacterial origin in the study area. A biplot of HIX and BIX showed that DOM from the hydrothermal vents had a characteristic similar to terrestrial cave and spring waters, but was distinct from isolated humics. (C) 2011 Elsevier B.V. All rights reserved

    Suppression of renal cell carcinoma growth in vivo by forced expression of vascular endothelial growth inhibitor

    Get PDF
    Vascular endothelial growth inhibitor (VEGI) has been associated with tumor-related vasculature in certain malignancies. However, its implication in renal cell carcinoma (RCC), an angiogenesis-dependent tumor, remains unknown. In the present study, we investigated the role played by VEGI in RCC. The expression of VEGI was examined in human renal tissue and RCC cell lines using immunohistochemical staining and RT-PCR, respectively. The biological impact of modifying the expression of VEGI in RCC cells was evaluated using in vitro and in vivo models. We show that VEGI mRNA is expressed in a wide variety of human RCC cell lines, all of normal renal and most of RCC tissue specimens. VEGI protein expression was observed in normal renal tubular epithelial cells, but was decreased or absent in RCC specimens, particularly in tumors with high grade. Moreover, forced expression of VEGI led to an inhibition of vascular endothelial tube formation, decrease in the motility and adhesion of RCC cells in vitro. Interestingly, forced expression of VEGI had no bearing on growth, apoptosis and invasive capacity of RCC cells. However, tumor growth was reduced in xenograft models. Immunohistochemical staining showed that microvessel density decreased in VEGI forced expression xenograft tumor samples. Taken together, our findings showed that the expression of VEGI is decreased in RCC, particularly in tumors with higher grade. Together with its inhibitory effect on cellular motility, adhesion, vascular endothelial tube formation and tumor growth in vivo, this suggests that VEGI functions mainly through inhibition of angiogenesis and is a negative regulator of aggressiveness during the development and progression of RCC

    Minute-cadence Observations of the LAMOST Fields with the TMTS: III. Statistic Study of the Flare Stars from the First Two Years

    Full text link
    Tsinghua University-Ma Huateng Telescopes for Survey (TMTS) aims to detect fast-evolving transients in the Universe, which has led to the discovery of thousands of short-period variables and eclipsing binaries since 2020. In this paper, we present the observed properties of 125 flare stars identified by the TMTS within the first two years, with an attempt to constrain their eruption physics. As expected, most of these flares were recorded in late-type red stars with GBPGRPG_{\rm BP}-G_{\rm RP} > 2.0 mag, however, the flares associated with bluer stars tend to be on average more energetic and have broader profiles. The peak flux (F_peak) of the flare is found to depend strongly on the equivalent duration (ED) of the energy release, i.e., FpeakED0.72±0.04F_{{\rm peak}} \propto {\rm ED}^{0.72\pm0.04}, which is consistent with results derived from the Kepler and Evryscope samples. This relation is likely related to the magnetic loop emission, while -- for the more popular non-thermal electron heating model -- a specific time evolution may be required to generate this relation. We notice that flares produced by hotter stars have a flatter FpeakEDF_{{\rm peak}} \propto {\rm ED} relation compared to that from cooler stars. This is related to the statistical discrepancy in light-curve shape of flare events with different colors. In spectra from LAMOST, we find that flare stars have apparently stronger H alpha emission than inactive stars, especially at the low temperature end, suggesting that chromospheric activity plays an important role in producing flares. On the other hand, the subclass having frequent flares are found to show H alpha emission of similar strength in their spectra to that recorded with only a single flare but similar effective temperature, implying that the chromospheric activity may not be the only trigger for eruptions.Comment: 17 pages, 15 figures, 2 tables, refereed version. For associated data files, see https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/523/219
    corecore