88 research outputs found

    Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific.

    Get PDF
    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow--an effect that needs to be better represented in climate models

    Autonomous analysis of infrared images for condition diagnosis of HV cable accessories

    Get PDF
    Infrared thermography has been used as a key means for the identification of overheating defects in power cable accessories. At present, analysis of thermal imaging pictures relies on human visual inspections, which is time-consuming and laborious and requires engineering expertise. In order to realize intelligent, autonomous recognition of infrared images taken from electrical equipment, previous studies reported preliminary work in preprocessing of infrared images and in the extraction of key feature parameters, which were then used to train neural networks. However, the key features required manual selection, and previous reports showed no practical implementations. In this contribution, an autonomous diagnosis method, which is based on the Faster RCNN network and the Mean-Shift algorithm, is proposed. Firstly, the Faster RCNN network is trained to implement the autonomous identification and positioning of the objects to be diagnosed in the infrared images. Then, the Mean-Shift algorithm is used for image segmentation to extract the area of overheating. Next, the parameters determining the temperature of the overheating parts of cable accessories are calculated, based on which the diagnosis are then made by following the relevant cable condition assessment criteria. Case studies are carried out in the paper, and results show that the cable accessories and their overheating regions can be located and assessed at different camera angles and under various background conditions via the autonomous processing and diagnosis methods proposed in the paper

    Influences of Urban Expansion on Urban Heat Island in Beijing during 1989–2010

    Get PDF
    Beijing has experienced rapid urbanization and associated urban heat island (UHI) effects. This study aimed at analyzing the impact of urban form on UHI in Beijing using TM/ETM images between 1989 and 2010. Spatial analysis was proposed to explore the relationships between area, compactness ratio, the gravity centers of urban land, and UHI. The UHI in Beijing spatially represented a “NE-SW” spindle. The land surface temperature (LST) was higher in south than in north. Urban Heat Island Ratio Index (URI) was well interrelated with urban land area in different zones. Under the similar urban land area condition, UHI and compactness ratio of urban land were in positive correlation. The moving direction of the UHI gravity center was basically in agreement with urban land sprawl. The encroachment of urban land on suburban land is the leading source of UHI effect. The results suggest that urban design based on urban form would be effective for regulating the thermal environment

    Food–energy–water nexus optimization brings substantial reduction of urban resource consumption and greenhouse gas emissions

    Get PDF
    Urban sustainability is a key to achieving the UN sustainable development goals (SDGs). Secure and efficient provision of food, energy, and water (FEW) resources is a critical strategy for urban sustainability. While there has been extensive discussion on the positive effects of the FEW nexus on resource efficiency and climate impacts, measuring the extent to which such synergy can benefit urban sustainability remains challenging. Here, we have developed a systematic and integrated optimization framework to explore the potential of the FEW nexus in reducing urban resource demand and greenhouse gas (GHG) emissions. Demonstrated using the Metropolis Beijing, we have identified that the optimized FEW nexus can reduce resource consumption and GHG emissions by 21.0 and 29.1%, respectively. These reductions come with increased costs compared to the siloed FEW management, but it still achieved a 16.8% reduction in economic cost compared to the business-as-usual scenario. These findings underscore the significant potential of FEW nexus management in enhancing urban resource efficiency and addressing climate impacts, while also identifying strategies to address trade-offs and increase synergies

    Spatiotemporal Variations of Ecosystem Service Indicators and the Driving Factors Under Climate Change in the Qinghai–Tibet Highway Corridor

    Get PDF
    In recent decades, the influence of climate change and human activities on the ecosystem services (ES) in the Qinghai–Tibet Plateau (QTP) has been extensively investigated. However, few studies focus on linear traffic corridor area, which is heavily affected by human activities. Taking the Golmud–Lhasa national highway corridor as a case, this study investigated the land-use and land-cover change (LUCC) and spatiotemporal variations of ES indicators using ecosystem indices of fractional vegetation cover (FVC), leaf area index (LAI), evapotranspiration (ET), and net primary productivity (NPP) from 2000 to 2020. The results indicated that LUCC was faster in the last decade, mostly characterized by the conversion from grassland to unused land. In buffer within 3000 m, the proportions of productive areas represented the increased trends with distance. In terms of ES variations, the improved areas outweighed the degraded areas in terms of FVC, LAI, and NPP from 2000 to 2020, mostly positioned in the Qinghai Province. In addition, FVC, LAI, and NPP peaked at approximately 6000 m over time. With regard to influencing factors, precipitation (20.54%) and temperature (14.19%) both positively influenced the spatiotemporal variation of FVC. Nearly 60% of the area exhibited an increased NPP over time, especially in the Qinghai Province, which could be attributed to the temperature increase over the last two decades. In addition, the distance effects of climatic factors on ES indicators exhibited that the coincident effects almost showed an opposite trend, while the reverse effects showed a similar trend. The findings of this study could provide a reference for the ecological recovery of traffic corridors in alpine fragile areas

    The Impact of Increasing Minor Arterial Flow on Arterial Coordination: An Analysis Based on MAXBAND Model

    No full text
    With the progress of urbanization, car ownership is experiencing explosive growth in China, which leads to heavy pressure on the urban road network. Arterial coordination strategy has been proved an effective method to avoid or alleviate traffic congestion. However, with the increasing proportion of flow on the minor arterial, arterial coordination efficiency might be affected. To figure out the problem, a numerical test is conducted by designing eight scenarios with different proportion of through movement and left turn flow on the minor arterials. MAXBAND model is applied for optimizing signal plans. The results show that average delay for vehicles on the arterials increases with the increasing of proportion of through movement flow, as well as the entire average delay. Average delay for vehicles on the minor arterials and two-way bandwidth decreases at same time. In other words, when the proportion of minor arterial flow increases, the arterial coordination efficiency would be reduced, especially for increasing left turn flow. This work reveals the improvement direction for arterial coordination

    a toolkit for generating sentences from context-free grammars

    No full text
    IEEE Computer SocietyProducing sentences from a grammar, according to various criteria, is required in many applications. It is also a basic building block for grammar engineering. This paper presents a toolkit for context-free grammars, which mainly consists of several algorithms for sentence generation or enumeration and for coverage analysis for context-free grammars. The toolkit deals with general context-free grammars. Besides providing implementations of algorithms, the toolkit also provides a simple graphical user interface, through which the user can use the toolkit directly. The toolkit is implemented in Java and is available at http://lcs.ios.ac.cn/˜zhiwu/toolkit.php. In the paper, the overview of the toolkit and the description of the GUI are presented, and experimental results and preliminary applications of the toolkit are also contained. © 2010 IEEE

    Properties and Applications of a New Chemical Grouting Material

    No full text
    The study investigates a new chemical grout by mixing the main agent, auxiliary agent, catalyst, foam stabilizer, solvent, and water, to treat the distress of railway tunnel. The orthogonal design was used to obtain 16 groups of grout proportion schemes, and reasonable proportion parameters were screened using laboratory and field tests. Additionally, this study included detailed research on the grout performance. The test results showed that the proportion schemes of groups 3, 4, and 15 grout were the most reasonable. In particular, for group 3, the viscosity is 663 MPa·s, the curing time is 119 s, the foaming capacity is 1589%, and the compressive strength is 20.16 MPa. For group 4, the viscosity is 663 MPa·s, the curing time is 137 s, the foaming capacity is 1809%, and the compressive strength is 17.76 MPa. For group 15, the viscosity is 281 MPa·s, the curing time is 98 s, the foaming capacity is 1173%, and the compressive strength is 26.79 MPa. Groups 4 and 15 grouts were used to treat the frost boiling and track bed subsidence in existed railway tunnels. Based on this, field monitoring showed that muddy water became clear water with an average depth of only 4 mm in the drainage ditch and that the irregular subsidence of the track bed was also solved after treatment. According to the aforementioned experimental research and analysis, it is proven that new grout not only exhibits a reasonable solidification time, high strength, and excellent waterproofing and impermeability with no pollution of the environment but also can be produced by a safe and convenient synthesis method. Group 4 is suitable for treating tunnel seepage, group 15 is suitable for structural reinforcement, and group 3 confers the advantages of seepage prevention, leakage stoppage, and reinforcement
    • …
    corecore