39 research outputs found

    Vertically Cobalt Nanoplate Arrays Based on One-Step Electrochemical Growth and Their Magnetic Properties

    No full text
    A cobalt nanoplate array (Co NPA) directly grown on a copper substrate by the one-step electrodeposition method is synthesized without any template. Most of the nanoplates with a height of ∌350 nm and length of up to several micrometers stand vertically on the copper substrate. The as-prepared cobalt nanoplates have the {100} crystal facets as the basal plane. By adjusting the electroplating conditions, the morphology and size of the cobalt nanocrystal can be modulated. Owing to the interesting anisotropic nanostructures, remarkable magnetic anisotropy is obtained on the Co NPA. In addition, the cobalt nanoplates are demonstrated to show enhanced magnetic properties compared with other cobalt nanostructures

    Confirming induction of the severe acute pancreatitis model.

    No full text
    <p>Assessment of pancreatic injury by HE staining. Pancreatitis was induced by pancreatic-ductal perfusion with 5% Sodium taurocholate. All rats were sacrificed at 24 h after disease model initiation. A: A typical photomicrographs of HE stained tissue obtained from control rat. B: A photomicrograph of pancreatic injury which includes pancreatic edema, neutrophil infiltration, necrosis and hemorrhage.</p

    Reverse the polarization of liver macrophages by IL-4 and Treg in vitro.

    No full text
    <p>Liver macrophages were obtained from at 24 h after SAP model initiation. In vitro, macrophages were respectively treated with PBS, IL-4 (10 ng/ml) or Treg (macrophages: Treg ≈2∶1) for 8 hour (S+PBS, S+IL-4, S+Treg group). The M1/M2 polarization was assessed using real-time PCR and immunofluorescence. A: mRNA level of M1 markers in the macrophages. B: mRNA level of M2 markers in the macrophages. C: Immunofluorescence examination of the polarization of macrophages. The significance of differing mRNA levels was analyzed while comparing with the CTRL group. Error bars indicate the mean ±S.E. *p<0.05, **p<0.01, ***p<0.001.</p

    Data_Sheet_1_RETRACTED: Oral Administration of Brain Protein Combined With Probiotics Induces Immune Tolerance Through the Tryptophan Pathway.docx

    No full text
    Excessive inflammation leads to secondary immune damage after traumatic brain injury (TBI). The intestinal mucosa is a key component of immune tolerance due to gut-brain axis regulation, but the curative effect is not optimal. Intestinal dysfunction impairs the establishment of immune tolerance in patients with TBI. Therefore, we orally administered brain protein (BP) combined with probiotics to induce immune tolerance and explored the mechanism by which the homeostasis of the microbiota contributes to the enhancement of curative effects by BPs. Herein, we demonstrated that patients with TBI and surgical brain injury (SBI) models of rats had obvious dysbiosis. Notably, the intestinal barrier, proinflammatory cytokines, and activation of microglia demonstrated that excessive inflammatory damage was better controlled in the combined group (oral administration of BP combined with probiotics) than in the BP group (oral administration of BP). Fundamentally, tandem mass tag (TMT)-based quantitative proteomics analysis revealed that BP and probiotics preferentially affect Try-related pathways. A series of experiments further confirmed that Indoleamine 2,3 dioxygenase (IDO)/Kynurenine (Kyn)/Aryl hydrocarbon receptor (AhR) expression was high in the BP group, while Tryptophan hydroxylase 1(TpH1)/5-hydroxytryptamine (5-HT) only changed in the combined group. This study suggests that probiotics can enhance the efficacy of oral BP-induced immune tolerance through the Try pathway.</p

    Treg cells reversed the polarization of Liver macrophages longer than IL-4 treatment.

    No full text
    <p>In vitro, macrophages were treated with IL-4 (10 ng/ml) or Treg (macrophages: Treg ≈2∶1) for 4, 8 and 16 hour. The polarization of M1/M2 was assessed using real time PCR and immunofluorescence. A: mRNA level of M1 markers in the macrophages. B: mRNA level of M2 markers in the macrophages. The significance of differing mRNA levels was analyzed while comparing the two groups in the same time point using the indifferent T-test. Error bars indicate the mean ±S.E. *p<0.05.</p

    Identification of regulatory T cells and liver macrophages using flow cytometry.

    No full text
    <p><b>A:</b> liver macrophages were identified as CD11b/c positive cells after primary culture for 24 hours. <b>B:</b> The purity of Treg cells was examined after isolation using magnetic beads.</p

    Table_1_Global research trends and hotspots on glioma stem cells.docx

    No full text
    BackgroundGlioma stem cells (GSCs) are a sub-population of cancer stem cells with capacity of self-renewal and differentiation. Accumulated evidence has revealed that GSCs were shown to contribute to gliomagenesis, distant metastasis as well as the resistance to radiotherapy and chemotherapy. As a result, GSCs were regarded as a promising therapeutic target in human glioma. The purpose of our study is to identify current state and hotspots of GSCs research by analyzing scientific publications through bibliometric methods.MethodsAll relevant publications on GSCs during 2003-2021 were extracted from the Science Citation Index Expanded of Web of Science Core Collection (WoSCC), and related information was collected and analyzed using Microsoft Excel 2016, GraphPad Prism 8 and VOSviewer software.ResultsA total of 4990 papers were included. The United States accounted for the largest number of publications (1852), the second average citations per item (ACI) value (67.54) as well as the highest H-index (157). Cancer Research was the most influential journal in this field. The most contributive institution was League of European Research Universities. RICH JN was the author with the most publications (109) and the highest H-index (59). All studies were clustered into 3 groups: “glioma stem cell properties”, “cell biological properties” and “oncology therapy”. The keywords “identification”, “CD133” and “side population” appeared earlier with the smaller average appearing years (AAY), and the keywords”radiotherapy” and “chemotherapy” had the latest AAY. The analysis of top cited articles showed that “temozolomide”, “epithelial-mesenchymal transition”, and “immunotherapy” emerged as new focused issues.ConclusionThere has been a growing number of researches on GSCs. The United States has always been a leading player in this domain. In general, the research focus has gradually shifted from basic cellular biology to the solutions of clinical concerns. “Temozolomide resistance”, “epithelial-mesenchymal transition”, and “immunotherapy” should be given more attention in the future.</p

    DataSheet_1_A cuproptosis-related genes signature associated with prognosis and immune cell infiltration in osteosarcoma.csv

    No full text
    Osteosarcoma (OS) is one of the most prevalent primary bone tumors at all ages of human development. The objective of our study was to develop a model of Cuproptosis-Related Genes (CRGs) for predicting prognosis in OS patients. All datasets of OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and Gene Expression Omnibus (GEO) database. We obtained the gene set (81 CRGs) related to cuproptosis by accessing the database and previous literature. All the CRGs were analyzed by univariate COX regression, least absolute shrinkage and selection operator (LASSO) COX regression analysis to screen for CRGs associated with prognosis in OS patients. Then these CRGs were used to construct a prognostic signature, which was further verified by independent cohort (GSE21257) and clinical correlation analysis. Afterward, to identify underlying mechanisms, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for the high-risk group by using the GSEA method. The association between the prognostic signature and 28 types of immune infiltrating cells in the tumor microenvironment was assessed. Ultimately, Lipoic Acid Synthetase (LIAS) (HR=0.632, P=0.004), Lipoyltransferase 1 (LIPT1) (HR=0.524, P=0.011), BCL2 Like 1 (BCL2L1/BCL-XL) (HR=0.593, P=0.022), and Pyruvate Dehydrogenase Kinase 1 (PDK1) (HR=0.662, P=0.025) were identified. Subsequently, they were used to calculate the risk score and build a prognostic model. In the training cohort, risk score (HR=1.878, P=0.003) could be considered as an independent prognostic factor, and OS patients with high-risk scores showed lower survival rates. Biological pathways related to substance metabolism and transport were enriched. There were significant differences in immune infiltrating cells in the tumor microenvironment. All in all, The CRGs signature is related to the tumor immune microenvironment and could be used as a credible predictor of the prognostic status in OS patients.</p

    DataSheet_3_A cuproptosis-related genes signature associated with prognosis and immune cell infiltration in osteosarcoma.csv

    No full text
    Osteosarcoma (OS) is one of the most prevalent primary bone tumors at all ages of human development. The objective of our study was to develop a model of Cuproptosis-Related Genes (CRGs) for predicting prognosis in OS patients. All datasets of OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and Gene Expression Omnibus (GEO) database. We obtained the gene set (81 CRGs) related to cuproptosis by accessing the database and previous literature. All the CRGs were analyzed by univariate COX regression, least absolute shrinkage and selection operator (LASSO) COX regression analysis to screen for CRGs associated with prognosis in OS patients. Then these CRGs were used to construct a prognostic signature, which was further verified by independent cohort (GSE21257) and clinical correlation analysis. Afterward, to identify underlying mechanisms, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for the high-risk group by using the GSEA method. The association between the prognostic signature and 28 types of immune infiltrating cells in the tumor microenvironment was assessed. Ultimately, Lipoic Acid Synthetase (LIAS) (HR=0.632, P=0.004), Lipoyltransferase 1 (LIPT1) (HR=0.524, P=0.011), BCL2 Like 1 (BCL2L1/BCL-XL) (HR=0.593, P=0.022), and Pyruvate Dehydrogenase Kinase 1 (PDK1) (HR=0.662, P=0.025) were identified. Subsequently, they were used to calculate the risk score and build a prognostic model. In the training cohort, risk score (HR=1.878, P=0.003) could be considered as an independent prognostic factor, and OS patients with high-risk scores showed lower survival rates. Biological pathways related to substance metabolism and transport were enriched. There were significant differences in immune infiltrating cells in the tumor microenvironment. All in all, The CRGs signature is related to the tumor immune microenvironment and could be used as a credible predictor of the prognostic status in OS patients.</p

    DataSheet_2_A cuproptosis-related genes signature associated with prognosis and immune cell infiltration in osteosarcoma.csv

    No full text
    Osteosarcoma (OS) is one of the most prevalent primary bone tumors at all ages of human development. The objective of our study was to develop a model of Cuproptosis-Related Genes (CRGs) for predicting prognosis in OS patients. All datasets of OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and Gene Expression Omnibus (GEO) database. We obtained the gene set (81 CRGs) related to cuproptosis by accessing the database and previous literature. All the CRGs were analyzed by univariate COX regression, least absolute shrinkage and selection operator (LASSO) COX regression analysis to screen for CRGs associated with prognosis in OS patients. Then these CRGs were used to construct a prognostic signature, which was further verified by independent cohort (GSE21257) and clinical correlation analysis. Afterward, to identify underlying mechanisms, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for the high-risk group by using the GSEA method. The association between the prognostic signature and 28 types of immune infiltrating cells in the tumor microenvironment was assessed. Ultimately, Lipoic Acid Synthetase (LIAS) (HR=0.632, P=0.004), Lipoyltransferase 1 (LIPT1) (HR=0.524, P=0.011), BCL2 Like 1 (BCL2L1/BCL-XL) (HR=0.593, P=0.022), and Pyruvate Dehydrogenase Kinase 1 (PDK1) (HR=0.662, P=0.025) were identified. Subsequently, they were used to calculate the risk score and build a prognostic model. In the training cohort, risk score (HR=1.878, P=0.003) could be considered as an independent prognostic factor, and OS patients with high-risk scores showed lower survival rates. Biological pathways related to substance metabolism and transport were enriched. There were significant differences in immune infiltrating cells in the tumor microenvironment. All in all, The CRGs signature is related to the tumor immune microenvironment and could be used as a credible predictor of the prognostic status in OS patients.</p
    corecore