4 research outputs found

    An Efficient Self-Powered Seawater Desalination System Based on a Wind-Driven Radial-Arrayed Rotary Triboelectric Nanogenerator

    No full text
    Seawater desalination (SD) is regarded as one of the most effective solutions to the shortage of fresh water in many desert and island areas. However, high energy consumption and environmental pollution impede its development. Herein, a self-powered seawater desalination (SP-SD) system is proposed to reduce energy consumption and environmental pollution by using a wind-driven radial-arrayed rotary triboelectric nanogenerator (RAR-TENG). As expected, the SP-SD unit achieves a high desalination capacity of 10.5 mg/h for the 0.17 M NaCl solution at a rotation speed of 350 rpm with a hydrogen (H2) production rate of 5.6 × 10–4 mL/s, which is superior to most previous reported results. Moreover, the SP-SD system could easily reach a desalination capacity of 2.4 mg/h at a low wind speed of 6 m/s by using natural wind energy. This wind-driven SP-SD system contributes an innovative approach to the field of environmental electrochemistry

    An Efficient Self-Powered Seawater Desalination System Based on a Wind-Driven Radial-Arrayed Rotary Triboelectric Nanogenerator

    No full text
    Seawater desalination (SD) is regarded as one of the most effective solutions to the shortage of fresh water in many desert and island areas. However, high energy consumption and environmental pollution impede its development. Herein, a self-powered seawater desalination (SP-SD) system is proposed to reduce energy consumption and environmental pollution by using a wind-driven radial-arrayed rotary triboelectric nanogenerator (RAR-TENG). As expected, the SP-SD unit achieves a high desalination capacity of 10.5 mg/h for the 0.17 M NaCl solution at a rotation speed of 350 rpm with a hydrogen (H2) production rate of 5.6 × 10–4 mL/s, which is superior to most previous reported results. Moreover, the SP-SD system could easily reach a desalination capacity of 2.4 mg/h at a low wind speed of 6 m/s by using natural wind energy. This wind-driven SP-SD system contributes an innovative approach to the field of environmental electrochemistry

    An Efficient Self-Powered Seawater Desalination System Based on a Wind-Driven Radial-Arrayed Rotary Triboelectric Nanogenerator

    No full text
    Seawater desalination (SD) is regarded as one of the most effective solutions to the shortage of fresh water in many desert and island areas. However, high energy consumption and environmental pollution impede its development. Herein, a self-powered seawater desalination (SP-SD) system is proposed to reduce energy consumption and environmental pollution by using a wind-driven radial-arrayed rotary triboelectric nanogenerator (RAR-TENG). As expected, the SP-SD unit achieves a high desalination capacity of 10.5 mg/h for the 0.17 M NaCl solution at a rotation speed of 350 rpm with a hydrogen (H2) production rate of 5.6 × 10–4 mL/s, which is superior to most previous reported results. Moreover, the SP-SD system could easily reach a desalination capacity of 2.4 mg/h at a low wind speed of 6 m/s by using natural wind energy. This wind-driven SP-SD system contributes an innovative approach to the field of environmental electrochemistry

    Facile Coordination-Precipitation Route to Insoluble Metal Roussin’s Black Salts for NIR-Responsive Release of NO for Anti-Metastasis

    No full text
    A facile and general coordination-precipitation method is developed to synthesize insoluble metal Roussin’s black salts (Me-RBSs) as a new type of NIR-responsive NORMs. The weak-field ligand coordination of metal<sup>+</sup>–RBS<sup>–</sup> brings a NIR absorption effect of Me-RBSs, and further gives rise to the NIR adsorption-dependent NIR-responsive NO release profile. Intratumoral NIR-responsive release of NO effectively inhibits the growth and metastasis of the metastatic breast cancer. Aqueous insolubility of Me-RBSs ensures lower cytotoxicity and higher thermostability compared with traditional soluble RBSs. This work establishes a new class of NIR-sensitive NO donors, and may spark new inspiration for designing intelligent gas-releasing molecules
    corecore