562 research outputs found
A Game-theoretic Machine Learning Approach for Revenue Maximization in Sponsored Search
Sponsored search is an important monetization channel for search engines, in
which an auction mechanism is used to select the ads shown to users and
determine the prices charged from advertisers. There have been several pieces
of work in the literature that investigate how to design an auction mechanism
in order to optimize the revenue of the search engine. However, due to some
unrealistic assumptions used, the practical values of these studies are not
very clear. In this paper, we propose a novel \emph{game-theoretic machine
learning} approach, which naturally combines machine learning and game theory,
and learns the auction mechanism using a bilevel optimization framework. In
particular, we first learn a Markov model from historical data to describe how
advertisers change their bids in response to an auction mechanism, and then for
any given auction mechanism, we use the learnt model to predict its
corresponding future bid sequences. Next we learn the auction mechanism through
empirical revenue maximization on the predicted bid sequences. We show that the
empirical revenue will converge when the prediction period approaches infinity,
and a Genetic Programming algorithm can effectively optimize this empirical
revenue. Our experiments indicate that the proposed approach is able to produce
a much more effective auction mechanism than several baselines.Comment: Twenty-third International Conference on Artificial Intelligence
(IJCAI 2013
On the Depth of Deep Neural Networks: A Theoretical View
People believe that depth plays an important role in success of deep neural
networks (DNN). However, this belief lacks solid theoretical justifications as
far as we know. We investigate role of depth from perspective of margin bound.
In margin bound, expected error is upper bounded by empirical margin error plus
Rademacher Average (RA) based capacity term. First, we derive an upper bound
for RA of DNN, and show that it increases with increasing depth. This indicates
negative impact of depth on test performance. Second, we show that deeper
networks tend to have larger representation power (measured by Betti numbers
based complexity) than shallower networks in multi-class setting, and thus can
lead to smaller empirical margin error. This implies positive impact of depth.
The combination of these two results shows that for DNN with restricted number
of hidden units, increasing depth is not always good since there is a tradeoff
between positive and negative impacts. These results inspire us to seek
alternative ways to achieve positive impact of depth, e.g., imposing
margin-based penalty terms to cross entropy loss so as to reduce empirical
margin error without increasing depth. Our experiments show that in this way,
we achieve significantly better test performance.Comment: AAAI 201
Generalized Second Price Auction with Probabilistic Broad Match
Generalized Second Price (GSP) auctions are widely used by search engines
today to sell their ad slots. Most search engines have supported broad match
between queries and bid keywords when executing GSP auctions, however, it has
been revealed that GSP auction with the standard broad-match mechanism they are
currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g.,
its theoretical properties are known only for the single-slot case and
full-information setting, and even in this simple setting, the corresponding
worst-case social welfare can be rather bad). To address this issue, we propose
a novel broad-match mechanism, which we call the Probabilistic Broad-Match
(PBM) mechanism. Different from SBM that puts together the ads bidding on all
the keywords matched to a given query for the GSP auction, the GSP with PBM
(denoted as PBM-GSP) randomly samples a keyword according to a predefined
probability distribution and only runs the GSP auction for the ads bidding on
this sampled keyword. We perform a comprehensive study on the theoretical
properties of the PBM-GSP. Specifically, we study its social welfare in the
worst equilibrium, in both full-information and Bayesian settings. The results
show that PBM-GSP can generate larger welfare than SBM-GSP under mild
conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in
Bayesian setting. To the best of our knowledge, this is the first work on
broad-match mechanisms for GSP that goes beyond the single-slot case and the
full-information setting
Mixed-Variable Global Sensitivity Analysis For Knowledge Discovery And Efficient Combinatorial Materials Design
Global Sensitivity Analysis (GSA) is the study of the influence of any given
inputs on the outputs of a model. In the context of engineering design, GSA has
been widely used to understand both individual and collective contributions of
design variables on the design objectives. So far, global sensitivity studies
have often been limited to design spaces with only quantitative (numerical)
design variables. However, many engineering systems also contain, if not only,
qualitative (categorical) design variables in addition to quantitative design
variables. In this paper, we integrate Latent Variable Gaussian Process (LVGP)
with Sobol' analysis to develop the first metamodel-based mixed-variable GSA
method. Through numerical case studies, we validate and demonstrate the
effectiveness of our proposed method for mixed-variable problems. Furthermore,
while the proposed GSA method is general enough to benefit various engineering
design applications, we integrate it with multi-objective Bayesian optimization
(BO) to create a sensitivity-aware design framework in accelerating the Pareto
front design exploration for metal-organic framework (MOF) materials with
many-level combinatorial design spaces. Although MOFs are constructed only from
qualitative variables that are notoriously difficult to design, our method can
utilize sensitivity analysis to navigate the optimization in the many-level
large combinatorial design space, greatly expediting the exploration of novel
MOF candidates.Comment: 35 Pages, 10 Figures, 2 Table
A Theoretical Analysis of NDCG Type Ranking Measures
A central problem in ranking is to design a ranking measure for evaluation of
ranking functions. In this paper we study, from a theoretical perspective, the
widely used Normalized Discounted Cumulative Gain (NDCG)-type ranking measures.
Although there are extensive empirical studies of NDCG, little is known about
its theoretical properties. We first show that, whatever the ranking function
is, the standard NDCG which adopts a logarithmic discount, converges to 1 as
the number of items to rank goes to infinity. On the first sight, this result
is very surprising. It seems to imply that NDCG cannot differentiate good and
bad ranking functions, contradicting to the empirical success of NDCG in many
applications. In order to have a deeper understanding of ranking measures in
general, we propose a notion referred to as consistent distinguishability. This
notion captures the intuition that a ranking measure should have such a
property: For every pair of substantially different ranking functions, the
ranking measure can decide which one is better in a consistent manner on almost
all datasets. We show that NDCG with logarithmic discount has consistent
distinguishability although it converges to the same limit for all ranking
functions. We next characterize the set of all feasible discount functions for
NDCG according to the concept of consistent distinguishability. Specifically we
show that whether NDCG has consistent distinguishability depends on how fast
the discount decays, and 1/r is a critical point. We then turn to the cut-off
version of NDCG, i.e., NDCG@k. We analyze the distinguishability of NDCG@k for
various choices of k and the discount functions. Experimental results on real
Web search datasets agree well with the theory.Comment: COLT 201
- …