62 research outputs found

    THE ISS AS A PLATFORM FOR A FULLY SIMULATED MARS VOYAGE

    Get PDF
    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable \analogue" for deep space exploration. NASA has indeed suggested a `full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final \analogue", performing a real `dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage

    An easy-to-use function to assess deep space radiation in human brains

    Get PDF
    Health risks from radiation exposure in space are an important factor for astronauts' safety as they venture on long-duration missions to the Moon or Mars. It is important to assess the radiation level inside the human brain to evaluate the possible hazardous effects on the central nervous system especially during solar energetic particle (SEP) events. We use a realistic model of the head/brain structure and calculate the radiation deposit therein by realistic SEP events, also under various shielding scenarios. We then determine the relation between the radiation dose deposited in different parts of the brain and the properties of the SEP events and obtain some simple and ready-to-use functions which can be used to quickly and reliably forecast the event dose in the brain. Such a novel tool can be used from fast nowcasting of the consequences of SEP events to optimization of shielding systems and other mitigation strategies of astronauts in space

    Modulation of brain and behavioural responses to cognitive visual stimuli with varying signal-to-noise ratios

    Get PDF
    Abstract Objective: To study behavioral and brain responses to variations in signal-to-noise ratio (SNR) of cognitive visual stimuli. Methods: We presented meaningful words visually, embedded in varying amounts of dynamic noise, and utilized magnetoencephalography (MEG) to measure responses to the words. A multidipole model of the evoked fields was constructed to quantify the strengths and latencies of the neuronal sources at each noise level. The recognition rates of the words were measured in separate behavioral sessions. Results: MEG revealed sequential activation of occipital and occipito-temporal areas (latencies 130-250 and 170-350 ms, respectively) followed by activity in superior temporal cortex (230-640 ms). The strengths and latencies of all identified sources followed functions similar to the SNR of the stimulus. The peak amplitudes and shortest latencies of all sources coincided with the maximum SNR of the stimulus. The occipito-temporal and temporal sources as well as the word recognition rate accurately followed the SNR of the stimulus whereas the early occipital source exhibited a more peaked dependence on the SNR. Conclusions: Evoked responses expectedly peaked at the maximum SNR of the stimulus. Interestingly, early visual responses showed sharper peaks than longer-latency sources as a function of the noise level. This can be understood as the higher-level processes analyzing the stimuli more holistically and thus being less sensitive to the salience of simple visual features. The similar noise-dependence of the longerlatency sources and the recognition rate provides new evidence for the relevance of these activations in the recognition of written words. Significance: This study contributes to the understanding of brain activity evoked by degraded stimuli with cognitive content

    Towards sustainable human space exploration—priorities for radiation research to quantify and mitigate radiation risks

    Full text link
    Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon’s orbit, return to the Moon’s surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit

    SQUID-detectors: a unique tool for functional studies in the brain

    No full text

    Synchronization of natural rhythms and possible underlying cerebral models

    No full text

    Simple inexpensive insert for cryogenics measurements in a storage vessel

    No full text

    Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    Get PDF
    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation
    • …
    corecore