47 research outputs found

    Tracking of Human Arm Based on MEMS Sensors

    Get PDF
    Abstract. This paper studied the method for motion tracking of arm using triaxial accelerometer, triaxial gyroscope and electronic compass. The motion model of arm is established. The hardware of tracking system of arm is designed. The track method of arm gesture based on multi-sensors data fusion is analyzed. The compensation algorithm for motion accelerations is researched. The experimental results demonstrate that the motion acceleration compensation algorithm is validity, which can improve the dynamic measure precision of arm gesture angle

    Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment

    Get PDF
    Mouth ulcers, a highly prevalent ailment affecting the oral mucosa, leading to pain and discomfort, significantly impacting the patient’s daily life. The development of innovative approaches for oral ulcer treatment is of great importance. Moreover, a deeper and more comprehensive understanding of mouth ulcers will facilitate the development of innovative therapeutic strategies. The oral environment possesses distinct traits as it serves as the gateway to the digestive and respiratory systems. The permeability of various epithelial layers can influence drug absorption. Moreover, oral mucosal injuries exhibit distinct healing patterns compared to cutaneous lesions, influenced by various inherent and extrinsic factors. Furthermore, the moist and dynamic oral environment, influenced by saliva and daily physiological functions like chewing and speaking, presents additional challenges in local therapy. Also, suitable mucosal adhesion materials are crucial to alleviate pain and promote healing process. To this end, the review comprehensively examines the anatomical and structural aspects of the oral cavity, elucidates the healing mechanisms of oral ulcers, explores the factors contributing to scar-free healing in the oral mucosa, and investigates the application of mucosal adhesive materials as drug delivery systems. This endeavor seeks to offer novel insights and perspectives for the treatment of oral ulcers

    Which is the Optimal Commercial Mode for a Video Site: Paid, Free, or Hybrid?

    No full text

    Depth‐aware lightweight network for RGB‐D salient object detection

    No full text
    Abstract RGB‐D salient object detection (SOD) is to detect salient objects from one RGB image and its depth data. Although related networks have achieved appreciable performance, they are not ideal for mobile devices since they are cumbersome and time‐consuming. The existing lightweight networks for RGB‐D SOD use depth information as additional input, and integrate depth information with colour image, which achieve impressive performance. However, the quality of depth information is uneven and the acquisition cost is high. To solve this issue, depth‐aware strategy is first combined to propose a lightweight SOD model, Depth‐Aware Lightweight network (DAL), using only RGB maps as input, which is applied to mobile devices. The DAL's framework is composed of multi‐level feature extraction branch, specially designed channel fusion module (CF) to perceive the depth information, and multi‐modal fusion module (MMF) to fuse the information of multi‐modal feature maps. The proposed DAL is evaluated on five datasets and it is compared with 14 models. Experimental results demonstrate that the proposed DAL outperforms the state‐of‐the‐art lightweight networks. The proposed DAL has only 5.6 M parameters and inference speed of 39 ms. Compared with the best‐performing lightweight method, the proposed DAL has fewer parameters, faster inference speed, and higher accuracy

    Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4

    No full text
    Insulator devices are important for transmission lines, and defects such as insulator bursting and string loss affect the safety of transmission lines. In this study, we aim to investigate the problems of slow detection speed and low efficiency of traditional insulator defect detection algorithms, and to improve the accuracy of insulator fault identification and the convenience of daily work; therefore, we propose an insulator defect detection algorithm based on an improved MobilenetV1-YOLOv4. First, the backbone feature extraction network of YOLOv4 ‘Backbone’ is replaced with the lightweight module Mobilenet-V1. Second, the scSE attention mechanism is introduced in stages of preliminary feature extraction and enhanced feature extraction, sequentially. Finally, the depthwise separable convolution substitutes the 3 × 3 convolution of the enhanced feature extraction network to reduce the overall number of network parameters. The experimental results show that the weight of the improved algorithm is 57.9 MB, which is 62.6% less than that obtained by the MobilenetV1-YOLOv4 model; the average accuracy of insulator defect detection is improved by 0.26% and reaches 98.81%; and the detection speed reaches 190 frames per second with an increase of 37 frames per second

    Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis.

    No full text
    Signaling pathways that control the activities in non-photosynthetic plastids, important sites of plant metabolism, are largely unknown. Previously, we demonstrated that WRKY2 and WRKY34 transcription factors play an essential role in pollen development downstream of mitogen-activated protein kinase 3 (MPK3) and MPK6 in Arabidopsis. Here, we report that GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 1 (GPT1) is a key target gene of WRKY2/WRKY34. GPT1 transports glucose-6-phosphate (Glc6P) into plastids for starch and/or fatty acid biosynthesis depending on the plant species. Loss of function of WRKY2/WRKY34 results in reduced GPT1 expression, and concomitantly, reduced accumulation of lipid bodies in mature pollen, which leads to compromised pollen viability, germination, pollen tube growth, and male transmission in Arabidopsis. Pollen-specific overexpression of GPT1 rescues the pollen defects of wrky2 wrky34 double mutant. Furthermore, gain-of-function activation of MPK3/MPK6 enhances GPT1 expression; whereas GPT1 expression is reduced in mkk4 mkk5 double mutant. Together, this study revealed a cytoplasmic/nuclear signaling pathway capable of coordinating the metabolic activities in plastids. High-level expression of GPT1 at late stages of pollen development drives Glc6P from cytosol into plastids, where Glc6P is used for fatty acid biosynthesis, an important step of lipid body biogenesis. The accumulation of lipid bodies during pollen maturation is essential to pollen fitness and successful reproduction

    The protective role of chicken cathelicidin-1 against Streptococcus suis serotype 2 in vitro and in vivo

    No full text
    Abstract Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen with the characteristics of high mortality and morbidity, which brings great challenges to prevent and control epidemic disease in the swine industry. Cathelicidins (CATH) are antimicrobial peptides with antimicrobial and immunomodulatory activities. In this study, bactericidal and anti-inflammatory effects of chicken cathelicidin-1 (CATH-1) were investigated in vitro and in vivo against SS2 infection. The results show that CATH-1 exhibited a better bactericidal effect compared to other species’ cathelicidins including chickens (CATH-2, -3, and -B1), mice (CRAMP) and pigs (PMAP-36 and PR-39), which rapidly killed bacteria in 20 min by a time-killing curve assay. Furthermore, CATH-1 destroyed the bacterial morphology and affected bacterial ultrastructure as observed under electron microscopy. Moreover, CATH-1 antibacterial activity in vivo shows that CATH-1 increased survival rate of SS2-infected mice by 60% and significantly reduced the bacterial load in the lungs, liver, spleen, blood, and peritoneal lavage as well as the release of SS2-induced inflammatory cytokines including IL-1α, IL-1ÎČ, IL-12, and IL-18. Importantly, CATH-1 did not show severe histopathological changes in mice. Further studies on the mechanism of anti-inflammatory activity show that CATH-1 not only reduced the inflammatory response through direct neutralization, but also by regulating the TLR2/4/NF-ÎșB/ERK pathway. This study provides a scientific basis for the research and development of antimicrobial peptides as new antimicrobial agents

    Quantitative Proteomics Analysis of Berberine-Treated Colon Cancer Cells Reveals Potential Therapy Targets

    No full text
    Colon cancer is one of the most lethal malignancies worldwide. Berberine has been found to exert potential anti-colon cancer activity in vitro and in vivo, although the detailed regulatory mechanism is still unclear. This study aims to identify the underlying crucial proteins and regulatory networks associated with berberine treatment of colon cancer by using proteomics as well as publicly available transcriptomics and tissue array data. Proteome profiling of berberine-treated colon cancer cells demonstrated that among 5130 identified proteins, the expression of 865 and 675 proteins were changed in berberine-treated HCT116 and DLD1 cells, respectively. Moreover, 54 differently expressed proteins that overlapped in both cell lines were mainly involved in mitochondrial protein synthesis, calcium mobilization, and metabolism of fat-soluble vitamins. Finally, GTPase ERAL1 and mitochondrial ribosomal proteins including MRPL11, 15, 30, 37, 40, and 52 were identified as hub proteins of berberine-treated colon cancer cells. These proteins have higher transcriptional and translational levels in colon tumor samples than that of colon normal samples, and were significantly down-regulated in berberine-treated colon cancer cells. Genetic dependency analysis showed that silencing the gene expression of seven hub proteins could inhibit the proliferation of colon cancer cells. This study sheds a light for elucidating the berberine-related regulatory signaling pathways in colon cancer, and suggests that ERAL1 and several mitochondrial ribosomal proteins might be promising therapeutic targets for colon cancer

    Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications.

    Get PDF
    BACKGROUND:The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays important roles in oncogenesis, angiogenesis, immunity, and tumor cell invasion. In the present study, we investigated the association of interleukin (IL)-6/STAT3 signaling pathway with T lymphocytes and clinical implication in patients with gastric cancer. METHODS:Seventy one patients who underwent gastrectomy due to gastric adenocarcinoma were studied. Blood samples were collected before and after surgical gastrectomy to quantify the levels of IL-6, IL-10 and VEGF using an enzyme-linked immunosorbent assay, as well as T lymphocyte subsets (CD3(+), CD4(+), CD8(+), CD4(+)/CD8(+)) and natural killer (NK) cells by a flow cytometry. Furthermore, the expression of IL-6, survivin, STAT3, STAT3 phosphorylation (p-STAT3), and VEGF were determined in human gastric cancer and adjacent normal mucosa through Western blot and immunohistochemistry. RESULTS:Postoperative levels of IL-6, IL-10 and VEGF in serum were significantly lower than preoperative levels. Percentages of T-cell subsets and NK cells in blood were significantly increased after postoperative-week 1 as compared to preoperative group, which was further augmented at 1 month after gastrectomy. In addition, the expression of IL-6, survivin, STAT3, p-STAT3, and VEGF were increased in human gastric cancer tissues as compared to adjacent normal mucosa. Their expression was associated with TNM stage of gastric cancer. The level of STAT3 activation in clinical samples was correlated with IL-6 expression. All gastric tumor samples, which expressed p-STAT3, also expressed IL-6 with weak expression detected in adjacent normal mucosa. CONCLUSION:Increased IL-6-induced activation of STAT3 was observed in neoplastic gastric tissue, which positively correlated with tumor progression. Moreover, IL-6 and STAT3 downstream signals such as IL-10 and VEGF were reduced in patients after removal of gastric cancer as compared to pre-operation. Therefore, inhibition of the IL-6/STAT3 signaling pathway may provide a new therapeutic strategy against gastric cancer
    corecore