30 research outputs found

    The Nutritional Composition of Maca in Hypocotyls ( Lepidium meyenii

    Get PDF

    Human-centered design and evaluation of AI-empowered clinical decision support systems: a systematic review

    Get PDF
    IntroductionArtificial intelligence (AI) technologies are increasingly applied to empower clinical decision support systems (CDSS), providing patient-specific recommendations to improve clinical work. Equally important to technical advancement is human, social, and contextual factors that impact the successful implementation and user adoption of AI-empowered CDSS (AI-CDSS). With the growing interest in human-centered design and evaluation of such tools, it is critical to synthesize the knowledge and experiences reported in prior work and shed light on future work.MethodsFollowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic review to gain an in-depth understanding of how AI-empowered CDSS was used, designed, and evaluated, and how clinician users perceived such systems. We performed literature search in five databases for articles published between the years 2011 and 2022. A total of 19874 articles were retrieved and screened, with 20 articles included for in-depth analysis.ResultsThe reviewed studies assessed different aspects of AI-CDSS, including effectiveness (e.g., improved patient evaluation and work efficiency), user needs (e.g., informational and technological needs), user experience (e.g., satisfaction, trust, usability, workload, and understandability), and other dimensions (e.g., the impact of AI-CDSS on workflow and patient-provider relationship). Despite the promising nature of AI-CDSS, our findings highlighted six major challenges of implementing such systems, including technical limitation, workflow misalignment, attitudinal barriers, informational barriers, usability issues, and environmental barriers. These sociotechnical challenges prevent the effective use of AI-based CDSS interventions in clinical settings.DiscussionOur study highlights the paucity of studies examining the user needs, perceptions, and experiences of AI-CDSS. Based on the findings, we discuss design implications and future research directions

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    <i>Agaricus bisporus</i> Polysaccharides Ameliorates Behavioural Deficits in D-Galactose-Induced Aging Mice: Mediated by Gut Microbiota

    No full text
    White button mushroom polysaccharide (WMP) has various health-promoting functions. However, whether these functions are mediated by gut microbiota has not been well explored. Therefore, this study evaluated the anti-aging capacity of WMP and its effects on the diversity and composition of gut microbiota in D-galactose-induced aging mice. WMP significantly improved locomotor activity and the spatial and recognition memory of the aging mice. It also alleviated oxidative stress and decreased the pro-inflammatory cytokine levels in the brain. Moreover, WMP increased α-diversity, the short-chain fatty acid (SCFA) level and the abundance of beneficial genera, such as Bacteroides and Parabacteroides. Moreover, its effect on Bacteroides at the species level was further determined, and the enrichments of B. acidifaciens, B. sartorii and B. stercorirosoris were found. A PICRUSt analysis revealed that WMP had a greater impact on the metabolism of carbon, fatty acid and amino acid, as well as the MAPK and PPAR signaling pathway. In addition, there was a strong correlation between the behavioral improvements and changes in SCFA levels and the abundance of Bacteroides, Parabacteroides, Mucispirillum and Desulfovibrio and Helicobacter. Therefore, WMP might be suitable as a functional foods to prevent or delay aging via the directed enrichment of specific species in Bacteroides

    Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries

    No full text
    This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content (p &lt; 0.05). Compared with control or samples coated with guar gum (blanching with or without calcium ions), the total oil (TO) of French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries

    Supercritical CO2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability

    No full text
    Supercritical fluid carbon dioxide (SF-CO2) was used to extract oil from Elaeagnus mollis Diels (E. mollis Diels) seed and its antioxidant ability was also investigated. The effect of extraction pressure (20&ndash;35 MPa), extraction temperature (35&ndash;65 C), extraction time (90&ndash;180 min) and seed particle size (40&ndash;100 mesh) on the oil yield were studied. An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield. Based on the optimum conditions, the maximum yield reached 29.35% at 30 MPa, 50 C, 150 min, 80 mesh seed particle size and 40 g/min SF-CO2 flow rate. The E. mollis Diels seed (EDS) oil obtained under optimal SF-CO2 extraction conditions had higher unsaturated fatty acid content (91.89%), higher vitamin E content (96.24 &plusmn; 3.01 mg/100 g) and higher total phytosterols content (364.34 &plusmn; 4.86 mg/100 g) than that extracted by Soxhlet extraction (SE) and cold pressing (CP) methods. The antioxidant activity of the EDS oil was measured by DPPH and hydroxyl radical scavenging test. EDS oil extracted by different methods exhibited a dose-dependent antioxidant ability, with IC50 values of no significant differences. Based on the results of correlation between bioactive compounds, lupeol and -tocopherol was the most important antioxidant in EDS oil

    In Vitro Inhibitory Effects of Polyphenols from <i>Flos sophorae immaturus</i> on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis

    No full text
    Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors

    In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on &alpha;-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis

    No full text
    Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with &alpha;-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of &alpha;-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to &alpha;-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential &alpha;-glucosidase inhibitors
    corecore