23 research outputs found

    APOPTOSIS, NUTRITION, AND METABOLISM OF TRANSPLANTED INTERVERTEBRAL DISC CELLS

    No full text
    ABSTRACT Introduction: Apoptosis is a contributing factor to degenerating intervertebral disc (IVD). Disc regeneration has been attempted by transplanting cells into the disc, with some gains in disc height achieved in animal models. Here, we study whether the apoptotic microenvironment affects the transplanted disc cells. Methods: Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were grown in media then starved for 5 days in vitro by not changing the media. Three aspects of apoptotic cell influence on the transplanted cells were tested in a total of 32 samples: 1) the effect of apoptotic cytokines in the media, 2) reduced glucose in the media, and 3) apoptotic cell bodies in the flask. The Trypan Blue, AlamarBlue®, and 1,9-Dimethyl-Methylene Blue assays for sulfated glycosaminoglycan (sGAG) content were performed (n=4). Results: There were significant decreases in cell viability between the control, 25% conditioned media (CM) and starved control group. There were no significant differences in cell number, metabolic activity or sGAG production in cells grown in different conditioned media compared to cells grown in complete media. The cells of the control decreased in viability and number over the 5 days without feeding, then improved dramatically when feeding was resumed. Flasks that received transplanted cells in addition to renewed feeding did not recover as much as the cells in the re-fed group. Conclusions: Cytokines from starved cells negatively impact on the viability of healthy cells. Starving cells that receive new sources of nutrition have even higher viability than transplanted cells. This indicates that altering and improving the nutrient supply problem in the IVD could be a valuable option. Level of Evidence III; Case control studyg

    ENERGY SUPPLY AND DEMAND IN THE INTERVERTEBRAL DISC

    No full text
    ABSTRACT The intervertebral disc (IVD) is one of the parts of the body most commonly affected by disease, and it is only recently that we have come closer to understanding the reasons for its degeneration, in which nutrient supply plays a crucial role. In this literature review, we discuss the basic principles and characteristics of energy supply and demand to the IVD. Specifically, we review how different metabolites influence IVD cell activity, the effects of mechanical loading on IVD cell metabolism, and differences in energy metabolism of the annulus fibrous and nucleus pulposus cell phenotypes. Determining the factors that influence nutrient supply and demand in the IVD will enhance our understanding of the IVD pathology, and help to elucidate new therapeutic targets for IVD degeneration treatment

    Intraoperative fluorescence imaging for personalized brain tumor resection: Current state and future directions

    Get PDF
    Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical theranostics. In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients, as well as future applications of recent laboratory and translational studies.Methods: Review of the literature.Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-ALA and ICG), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine can be used for rapid tumor detection and pathological tissue examination. Other emerging agents such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.Conclusion: We are standing on the doorstep of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors

    5-aminolevulinic acid, fluorescein sodium, and indocyanine green for glioma margin detection: analysis of operating wide-field and confocal microscopy in glioma models of various grades

    No full text
    INTRODUCTION: Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. METHODS: Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. RESULTS: Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. DISCUSSION: Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection

    Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery

    No full text
    Purpose: This study evaluated the use of molecular imaging of fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as a discriminatory marker for intraoperative tumor border identification in a murine glioma model. Procedures: 2-NBDG was assessed in GL261 and U251 orthotopic tumor-bearing mice. Intraoperative fluorescence of topical and intravenous 2-NBDG in normal and tumor regions was assessed with an operating microscope, handheld confocal laser scanning endomicroscope (CLE), and benchtop confocal laser scanning microscope (LSM). Additionally, 2-NBDG fluorescence in tumors was compared with 5-aminolevulinic acid–induced protoporphyrin IX fluorescence. Results: Intravenously administered 2-NBDG was detectable in brain tumor and absent in contralateral normal brain parenchyma on wide-field operating microscope imaging. Intraoperative and benchtop CLE showed preferential 2-NBDG accumulation in the cytoplasm of glioma cells (mean [SD] tumor-to-background ratio of 2.76 [0.43]). Topically administered 2-NBDG did not create sufficient tumor-background contrast for wide-field operating microscope imaging or under benchtop LSM (mean [SD] tumor-to-background ratio 1.42 [0.72]). However, topical 2-NBDG did create sufficient contrast to evaluate cellular tissue architecture and differentiate tumor cells from normal brain parenchyma. Protoporphyrin IX imaging resulted in a more specific delineation of gross tumor margins than intravenous or topical 2-NBDG and a significantly higher tumor-to-normal-brain fluorescence intensity ratio. Conclusion: After intravenous administration, 2-NBDG selectively accumulated in the experimental brain tumors and provided bright contrast under wide-field fluorescence imaging with a clinical-grade operating microscope. Topical 2-NBDG was able to create a sufficient contrast to differentiate tumor from normal brain cells on the basis of visualization of cellular architecture with CLE. 5-Aminolevulinic acid demonstrated superior specificity in outlining tumor margins and significantly higher tumor background contrast. Given the nontoxicity of 2-NBDG, its use as a topical molecular marker for noninvasive in vivo intraoperative microscopy is encouraging and warrants further clinical evaluation

    Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery.

    No full text
    PURPOSE: This study evaluated the use of molecular imaging of fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as a discriminatory marker for intraoperative tumor border identification in a murine glioma model. PROCEDURES: 2-NBDG was assessed in GL261 and U251 orthotopic tumor-bearing mice. Intraoperative fluorescence of topical and intravenous 2-NBDG in normal and tumor regions was assessed with an operating microscope, handheld confocal laser scanning endomicroscope (CLE), and benchtop confocal laser scanning microscope (LSM). Additionally, 2-NBDG fluorescence in tumors was compared with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. RESULTS: Intravenously administered 2-NBDG was detectable in brain tumor and absent in contralateral normal brain parenchyma on wide-field operating microscope imaging. Intraoperative and benchtop CLE showed preferential 2-NBDG accumulation in the cytoplasm of glioma cells (mean [SD] tumor-to-background ratio of 2.76 [0.43]). Topically administered 2-NBDG did not create sufficient tumor-background contrast for wide-field operating microscope imaging or under benchtop LSM (mean [SD] tumor-to-background ratio 1.42 [0.72]). However, topical 2-NBDG did create sufficient contrast to evaluate cellular tissue architecture and differentiate tumor cells from normal brain parenchyma. Protoporphyrin IX imaging resulted in a more specific delineation of gross tumor margins than intravenous or topical 2-NBDG and a significantly higher tumor-to-normal-brain fluorescence intensity ratio. CONCLUSION: After intravenous administration, 2-NBDG selectively accumulated in the experimental brain tumors and provided bright contrast under wide-field fluorescence imaging with a clinical-grade operating microscope. Topical 2-NBDG was able to create a sufficient contrast to differentiate tumor from normal brain cells on the basis of visualization of cellular architecture with CLE. 5-Aminolevulinic acid demonstrated superior specificity in outlining tumor margins and significantly higher tumor background contrast. Given the nontoxicity of 2-NBDG, its use as a topical molecular marker for noninvasive in vivo intraoperative microscopy is encouraging and warrants further clinical evaluation

    Seven bypasses simulation set: description and validity assessment of novel models for microneurosurgical training

    No full text
    OBJECTIVE: Microsurgical training remains indispensable to master cerebrovascular bypass procedures, but simulation models for training that accurately replicate microanastomosis in narrow, deep-operating corridors are lacking. Seven simulation bypass scenarios were developed that included head models in various surgical positions with premade approaches, simulating the restrictions of the surgical corridors and hand positions for microvascular bypass training. This study describes these models and assesses their validity. METHODS: Simulation models were created using 3D printing of the skull with a designed craniotomy. Brain and external soft tissues were cast using a silicone molding technique from the clay-sculptured prototypes. The 7 simulation scenarios included: 1) temporal craniotomy for a superficial temporal artery (STA)-middle cerebral artery (MCA) bypass using the M4 branch of the MCA; 2) pterional craniotomy and transsylvian approach for STA-M2 bypass; 3) bifrontal craniotomy and interhemispheric approach for side-to-side bypass using the A3 branches of the anterior cerebral artery; 4) far lateral craniotomy and transcerebellomedullary approach for a posterior inferior cerebellar artery (PICA)-PICA bypass or 5) PICA reanastomosis; 6) orbitozygomatic craniotomy and transsylvian-subtemporal approach for a posterior cerebral artery bypass; and 7) extended retrosigmoid craniotomy and transcerebellopontine approach for an occipital artery-anterior inferior cerebellar artery bypass. Experienced neurosurgeons evaluated each model by practicing the aforementioned bypasses on the models. Face and content validities were assessed using the bypass participant survey. RESULTS: A workflow for model production was developed, and these models were used during microsurgical courses at 2 neurosurgical institutions. Each model is accompanied by a corresponding prototypical case and surgical video, creating a simulation scenario. Seven experienced cerebrovascular neurosurgeons practiced microvascular anastomoses on each of the models and completed surveys. They reported that actual anastomosis within a specific approach was well replicated by the models, and difficulty was comparable to that for real surgery, which confirms the face validity of the models. All experts stated that practice using these models may improve bypass technique, instrument handling, and surgical technique when applied to patients, confirming the content validity of the models. CONCLUSIONS: The 7 bypasses simulation set includes novel models that effectively simulate surgical scenarios of a bypass within distinct deep anatomical corridors, as well as hand and operator positions. These models use artificial materials, are reusable, and can be implemented for personal training and during microsurgical courses

    Apparent diffusion coefficient maps in the assessment of surgical patients with lumbar spine degeneration

    No full text
    <div><p>Purpose</p><p>To assess the utility of apparent diffusion coefficient (ADC) maps for the assessment of patients with advanced degenerative lumbar spine disease and describe characteristic features of ADC maps in various degenerative lumbar spinal conditions.</p><p>Methods</p><p>T1-weighted, T2-weighted and diffusion weighted (DWI) MR images of 100 consecutive patients admitted to the spinal surgery service were assessed. ADC maps were generated from DWI images using Osyrix software. The ADC values and characteristic ADC maps were assessed in the regions of interest over the different pathological entities of the lumbar spine.</p><p>Results</p><p>The study included 452 lumbar vertebral segments available for analysis of ADCs. Characteristic ADC map features were identified for protrusion, extrusion and sequester types of lumbar disk herniations, spondylolisthesis, reactive Modic endplate changes, Pfirrmann grades of IVD degeneration, and compromised spinal nerves. Compromised nerve roots had significantly higher mean ADC values than adjacent (p < 0.001), contralateral (p < 0.001) or adjacent contralateral (p < 0.001) nerve roots. Compared to the normal bone marrow, Modic I changes showed higher ADC values (p = 0.01) and Modic 2 changes showed lower ADC values (p = 0.02) respectively. ADC values correlated with the Pfirrmann grading, however differed from herniated and non-herniated disks of the matched Pfirrmann 3 and 4 grades.</p><p>Conclusion</p><p>Quantitative and qualitative evaluation of ADC mapping may provide additional useful information regarding the fluid dynamics of the degenerated spine and may complement standard MRI imaging protocol for the comprehensive assessment of surgical patients with lumbar spine pathology. ADC maps were advantageous in differentiating reactive bone marrow changes, and more precise assessment of the disk degeneration state. ADC mapping of compressed nerve roots showed promise but requires further investigation on a larger cohort of patients.</p></div

    Assessment of ADC values from herniated and non-herniated disks in various Pfirrmann degeneration grades.

    No full text
    <p>Diagram of mean ADC values in herniated and non-herniated intervertebral disks stratified y the Pfirrmann grades. Significant differences were observed in the Pfirrmann grades 3 and 4. Totally 114/452 (25%) disks were included in the analysis as herniated (grade 3, n = 42; grade 4, n = 57 and grade 5, n = 15), 316/452 (70%) as non-herniated (grade 2, n = 114; grade 3, n = 150; grade 4, n = 48; grade 5, n = 4), and 22/452(5%) disks were excluded from the analysis due to spondylolisthesis or lumbar stenosis without herniation. ADC, apparent diffusion coefficient, LDH, lumbar disk herniation.</p

    Sequester type of disk herniation.

    No full text
    <p>(A) Parasagittal ADC map, (B) sagittal T2-WI, (C) overlay and (D) axial T2-WI showing caudally migrated T2 hyperintence disk fragment occupying paraforaminal zone ADC, apparent diffusion coefficient; T2-WI, T2-weighted image.</p
    corecore