13 research outputs found

    A cascade of irx1a and irx2a controls shh expression during retinogenesis

    No full text
    In animal retina, hedgehog expression drives waves of neurogenesis, but genetic programs that control its expression during retinal neurogenesis are poorly elucidated. We have previously reported that irx1a is required for propagation of the sonic hedgehog (shh) expression waves in developing zebrafish retina. Here, we found that irx2a is expressed in the developing retina and that knockdown of irx2a results in a retinal phenotype strikingly similar to that of irx1a morphants. The expression of irx2a in retina ganglion cells was shown to be irx1a- and ath5-dependent suggesting that irx1a and ath5 are transcriptional regulators of irx2a. Furthermore, irx2a expression could rescue impaired propagation of shh waves in irx1a morphants. Together, these observations suggest that Irx2 functions downstream of irx1a to control shh expression in the retina. We proposed a novel transcriptional cascade of ath5-irx1a-irx2a in the regulation of hedgehog waves during vertebrate retinal development. © 2010 Wiley-Liss, Inc.link_to_OA_fulltex

    In situ electrochemical generation of nitric oxide for neuronal modulation

    No full text
    Understanding the function of nitric oxide, a lipophilic messenger in physiological processes across nervous, cardiovascular and immune systems, is currently impeded by the dearth of tools to deliver this gaseous molecule in situ to specific cells. To address this need, we have developed iron sulfide nanoclusters that catalyse nitric oxide generation from benign sodium nitrite in the presence of modest electric fields. Locally generated nitric oxide activates the nitric oxide-sensitive cation channel, transient receptor potential vanilloid family member 1 (TRPV1), and the latency of TRPV1-mediated Ca2+ responses can be controlled by varying the applied voltage. Integrating these electrocatalytic nanoclusters with multimaterial fibres allows nitric oxide-mediated neuronal interrogation in vivo. The in situ generation of nitric oxide in the ventral tegmental area with the electrocatalytic fibres evoked neuronal excitation in the targeted brain region and its excitatory projections. This nitric oxide generation platform may advance mechanistic studies of the role of nitric oxide in the nervous system and other organs.National Institute of Neurological Disorders and Stroke (Grant 5R01NS086804)National Institutes of Health BRAIN Initiative (Grant 1R01MH111872
    corecore