1,475 research outputs found

    Ising model with periodic pinning of mobile defects

    Full text link
    A two-dimensional Ising model with short-range interactions and mobile defects describing the formation and thermal destruction of defect stripes is studied. In particular, the effect of a local pinning of the defects at the sites of straight equidistant lines is analysed using Monte Carlo simulations and the transfer matrix method. The pinning leads to a long-range ordered magnetic phase at low temperatures. The dependence of the phase transition temperature, at which the defect stripes are destabilized, on the pinning strength is determined. The transition seems to be of first order, with and without pinning.Comment: 7 pages, 7 figure

    Collective dynamics of internal states in a Bose gas

    Get PDF
    Theory for the Rabi and internal Josephson effects in an interacting Bose gas in the cold collision regime is presented. By using microscopic transport equation for the density matrix the problem is mapped onto a problem of precession of two coupled classical spins. In the absence of an external excitation field our results agree with the theory for the density induced frequency shifts in atomic clocks. In the presence of the external field, the internal Josephson effect takes place in a condensed Bose gas as well as in a non-condensed gas. The crossover from Rabi oscillations to the Josephson oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure

    Demonstrating the Feasibility of Line Intensity Mapping Using Mock Data of Galaxy Clustering from Simulations

    Full text link
    Visbal & Loeb (2010) have shown that it is possible to measure the clustering of galaxies by cross correlating the cumulative emission from two different spectral lines which originate at the same redshift. Through this cross correlation, one can study galaxies which are too faint to be individually resolved. This technique, known as intensity mapping, is a promising probe of the global properties of high redshift galaxies. Here, we test the feasibility of such measurements with synthetic data generated from cosmological dark matter simulations. We use a simple prescription for associating galaxies with dark matter halos and create a realization of emitted radiation as a function of angular position and wavelength over a patch of the sky. This is then used to create synthetic data for two different hypothetical instruments, one aboard the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and another consisting of a pair of ground based radio telescopes designed to measure the CO(1-0) and CO(2-1) emission lines. We find that the line cross power spectrum can be measured accurately from the synthetic data with errors consistent with the analytical prediction of Visbal & Loeb (2010). Removal of astronomical backgrounds and masking bright line emission from foreground contaminating galaxies do not prevent accurate cross power spectrum measurements.Comment: 12 pages, 6 figures, Submitted to JCA

    Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials

    Get PDF
    We discuss a method to create two-dimensional traps as well as atomic shell, or bubble, states for a Bose-Einstein condensate initially prepared in a conventional magnetic trap. The scheme relies on the use of time-dependent, radio frequency-induced adiabatic potentials. These are shown to form a versatile and robust tool to generate novel trapping potentials. Our shell states take the form of thin, highly stable matter-wave bubbles and can serve as stepping-stones to prepare atoms in highly-excited trap eigenstates or to study `collapse and revival phenomena'. Their creation requires gravitational effects to be compensated by applying additional optical dipole potentials. However, in our scheme gravitation can also be exploited to provide a route to two-dimensional atom trapping. We demonstrate the loading process for such a trap and examine experimental conditions under which a 2D condensate may be prepared.Comment: 16 pages, 10 figure

    Hidden symmetry and knot solitons in a charged two-condensate Bose system

    Full text link
    We show that a charged two-condensate Ginzburg-Landau model or equivalently a Gross-Pitaevskii functional for two charged Bose condensates, can be mapped onto a version of the nonlinear O(3) σ\sigma-model. This implies in particular that such a system possesses a hidden O(3) symmetry and allows for the formation of stable knotted solitons. The results, in particular, should be relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case when condensates in two bands do not independently conserve, also added a figure and references to experimental papers on MgB_2 (for which our study is relevant). Miscellaneous links on knot solitons are also available at the homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knot solitons are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
    corecore