149,398 research outputs found

    Semiblind subgraph reconstruction in Gaussian graphical models

    Full text link
    Consider a social network where only a few nodes (agents) have meaningful interactions in the sense that the conditional dependency graph over node attribute variables (behaviors) is sparse. A company that can only observe the interactions between its own customers will generally not be able to accurately estimate its customers' dependency subgraph: it is blinded to any external interactions of its customers and this blindness creates false edges in its subgraph. In this paper we address the semiblind scenario where the company has access to a noisy summary of the complementary subgraph connecting external agents, e.g., provided by a consolidator. The proposed framework applies to other applications as well, including field estimation from a network of awake and sleeping sensors and privacy-constrained information sharing over social subnetworks. We propose a penalized likelihood approach in the context of a graph signal obeying a Gaussian graphical models (GGM). We use a convex-concave iterative optimization algorithm to maximize the penalized likelihood.Comment: 7 pages; 5 figures; 2017 5th IEEE Global Conference on Signal and Information Processin

    Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B

    Get PDF
    A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed

    Influence of interface structure on electronic properties and Schottky barriers in Fe/GaAs magnetic junctions

    Full text link
    The electronic and magnetic properties of Fe/GaAs(001) magnetic junctions are investigated using first-principles density-functional calculations. Abrupt and intermixed interfaces are considered, and the dependence of charge transfer, magnetization profiles, Schottky barrier heights, and spin polarization of densities of states on interface structure is studied. With As-termination, an abrupt interface with Fe is favored, while Ga-terminated GaAs favors the formation of an intermixed layer with Fe. The Schottky barrier heights are particularly sensitive to the abruptness of the interface. A significant density of states in the semiconducting gap arises from metal interface states. These spin-dependent interface states lead to a significant minority spin polarization of the density of states at the Fermi level that persists well into the semiconductor, providing a channel for the tunneling of minority spins through the Schottky barrier. These interface-induced gap states and their dependence on atomic structure at the interface are discussed in connection with potential spin-injection applications.Comment: 9 pages, 9 figures, to appear in PR

    Doppler effects on velocity spectra observed by MST radars

    Get PDF
    Recently, wind data from mesophere-stratosphere-troposphere (MST) radars have been used to study the spectra of gravity waves in the atmosphere (Scheffler and Liu, 1985; VanZandt et al., 1985). Since MST radar measures the line-of-sight Doppler velocities, it senses the components of the wave-associated velocities along its beam directions. These components are related through the polarization relations which depend on the frequency and wave number of the wave. Therfore, the radar-observed velocity spectrum will be different from the original gravity-wave spectrum. Their relationship depends on the frequency and wave number of the wave as well as the propagation geometry. This relation can be used to interpret the observed data. It can also be used to test the assumption of gravity-wave spectrum (Scheffler and Liu, 1985). In deriving this relation, the background atmosphere has been assumed to be motionless. Obviously, the Doppler shift due to the background wind will change the shape of the gravity-wave power spectrum as well as its relation with the radar-observed spectrum. Here, researcher's investigate these changes

    Recycle-GAN: Unsupervised Video Retargeting

    Full text link
    We introduce a data-driven approach for unsupervised video retargeting that translates content from one domain to another while preserving the style native to a domain, i.e., if contents of John Oliver's speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert's style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style preservation. In this work, we first study the advantages of using spatiotemporal constraints over spatial constraints for effective retargeting. We then demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos - http://www.cs.cmu.edu/~aayushb/Recycle-GA

    A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory

    Get PDF
    An exact solution of the source-free Kaluza-Klein field equations is presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical gravitational wave with a cosmological constant. The properties of the 5D solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR
    corecore