297,828 research outputs found
Technique for analyzing human respiratory process
Electronic system /MIRACLE 2/ places frequency and gas flow rate of the respiratory process within a common frame of reference to render them comparable and compatible with ''real clock time.'' Numerous measurements are accomplished accurately on a strict one-minute half-minute, breath-by-breath, or other period basis
Respiratory analysis system and method
A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements
The long-term optical behavior of MRK421
All data available in B band for the BL Lac object MRK421 from 22
publications are used to construct a historical light curve, dating back to
1900. It is found that the light curve is very complicated and consists of a
set of outbursts with very large duration. The brightness of MRK421 varies from
11.6 magnitude to more than 16 magnitude. Analyses with Jurkevich method of
computing period of cyclic phenomena reveal in the light curve two kinds of
behaviors. The first one is non-periodic with rapid, violent variations in
intensity on time scales of hours to days. The second one is periodic with a
possible period of years. Another possible period of years is not very significant. We have tested the robustness of the
Jurkevich method. The period of about one year found in the light curves of
MRK421 and of other objects is a spurious period due to the method and the
observing window. We try to explain the period of years under the
thermal instability of a slim accretion disk around a massive black hole of
mass of .Comment: Tex, 14 pages, 5 Postscript figures. Accepted for publication in A&A
Supplement Serie
- …