12,783 research outputs found
Psychological ownership: linking employee past and future in an organization to employee outcomes
Modern day management has placed increasing importance on creating organic and substantive relationships between employees and employers as in knowledge based economies, organizational efficiency and effectiveness depends much on employees’ initiatives and extra-ordinary efforts. In the present study, we focus on psychological ownership, described by Pierce (2003) as a cognitive-affective state that reflects employees’ awareness, thoughts, and beliefs that the target of ownership (e.g. the organization) is theirs, as a form of such relationships. We adopt a temporal perspective in conceptualizing how psychological ownership may be cultivated and how psychological ownership, in turn, would lead to ...postprin
End-to-End Learning of Video Super-Resolution with Motion Compensation
Learning approaches have shown great success in the task of super-resolving
an image given a low resolution input. Video super-resolution aims for
exploiting additionally the information from multiple images. Typically, the
images are related via optical flow and consecutive image warping. In this
paper, we provide an end-to-end video super-resolution network that, in
contrast to previous works, includes the estimation of optical flow in the
overall network architecture. We analyze the usage of optical flow for video
super-resolution and find that common off-the-shelf image warping does not
allow video super-resolution to benefit much from optical flow. We rather
propose an operation for motion compensation that performs warping from low to
high resolution directly. We show that with this network configuration, video
super-resolution can benefit from optical flow and we obtain state-of-the-art
results on the popular test sets. We also show that the processing of whole
images rather than independent patches is responsible for a large increase in
accuracy.Comment: Accepted to GCPR201
Control over phase separation and nucleation using a laser-tweezing potential
Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter
Regional difference of the start time of the recent warming in Eastern China: prompted by a 165-year temperature record deduced from tree rings in the Dabie Mountains
Tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on the tree-ring-width chronology of samples collected from the Dabie Mountains, we reconstructed the April-June mean temperature for this region with an explained variance of 46.8%. Five cold (1861-1869, 1889-1899, 1913-1920, 1936-1942 and 1952-1990) and three warm (1870-1888, 1922-1934 and 2000-2005) periods were identified in the reconstruction. The reconstruction not only agreed well with the instrumental records in and around the study area, but also showed good resemblance to previous temperature reconstructions from nearby regions, indicating its spatial and temporal representativeness of the temperature variation in the central part of eastern China. Although no secular warming trend was found, the warming trend since 1970 was unambiguous in the Dabie Mountains (0.064 A degrees C/year). Further temperature comparison indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part. This work enriches the high-resolution temperature reconstructions in eastern China. We expect that climate warming in the future would promote the radial growth of alpine Pinus taiwanensis in the subtropical areas of China, therefore promote the carbon capture and carbon storage in the Pinus taiwanensis forest. It also helps to clarify the regional characteristic of recent warming in eastern China.</p
Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake
Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008,
at least 300 million metric tons of water accumulated with additional seasonal
water level changes in the Minjiang River Valley at the eastern margin of the
Longmen Shan. This article shows that static surface loading in the Zipingpu
water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust
fault system at <17km depth. Triggering stresses exceeded levels of daily lunar
and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress
perturbations, in turn, likely advanced the clock of the mainshock and directed
the initial rupture propagation upward towards the reservoir on the
"Coulomb-like" Beichuan fault with rate-and-state dependent frictional
behavior. Static triggering perturbations produced up to 60 years (0.6%) of
equivalent tectonic loading, and show strong correlations to the coseismic
slip. Moreover, correlations between clock advancement and coseismic slip,
observed during the mainshock beneath the reservoir, are strongest for a longer
seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the
micro-seismicity (M>0.5) correlates well with the static stress perturbations,
indicating destabilization.Comment: 22 pages, 4 figures, 3 table
49 Gbit/s Direct-Modulation and Direct-Detection Transmission over 80 km SMF-28 without Optical Amplification or Filtering
We demonstrate direct-modulation of a discrete mode laser using Discrete Multi-Tone modulation for transmission distances up to 100 km in the 1550 nm band. A large operational temperature range (0-65ºC) is also demonstrated
General Gauge Mediation at the Weak Scale
We completely characterize General Gauge Mediation (GGM) at the weak scale by
solving all IR constraints over the full parameter space. This is made possible
through a combination of numerical and analytical methods, based on a set of
algebraic relations among the IR soft masses derived from the GGM boundary
conditions in the UV. We show how tensions between just a few constraints
determine the boundaries of the parameter space: electroweak symmetry breaking
(EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom
tachyons. While these constraints allow the left-handed squarks to be
arbitrarily light, they place strong lower bounds on all of the right-handed
squarks. Meanwhile, light EW superpartners are generic throughout much of the
parameter space. This is especially the case at lower messenger scales, where a
positive threshold correction to coming from light Higgsinos and winos is
essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc
High-mass X-ray binaries and OB-runaway stars
High-mass X-ray binaries (HMXBs) represent an important phase in the
evolution of massive binary systems. HMXBs provide unique diagnostics to test
massive-star evolution, to probe the physics of radiation-driven winds, to
study the process of mass accretion, and to measure fundamental parameters of
compact objects. As a consequence of the supernova explosion that produced the
neutron star (or black hole) in these systems, HMXBs have high space velocities
and thus are runaways. Alternatively, OB-runaway stars can be ejected from a
cluster through dynamical interactions. Observations obtained with the
Hipparcos satellite indicate that both scenarios are at work. Only for a
minority of the OB runaways (and HMXBs) a wind bow shock has been detected.
This might be explained by the varying local conditions of the interstellar
medium.Comment: 15 pages, latex (sty file included) with 5 embedded figures (one in
jpg format), to appear in Proc. "Influence of binaries on stellar population
studies", Eds. Vanbeveren, Van Rensberge
A microchip optomechanical accelerometer
The monitoring of accelerations is essential for a variety of applications
ranging from inertial navigation to consumer electronics. The basic operation
principle of an accelerometer is to measure the displacement of a flexibly
mounted test mass; sensitive displacement measurement can be realized using
capacitive, piezo-electric, tunnel-current, or optical methods. While optical
readout provides superior displacement resolution and resilience to
electromagnetic interference, current optical accelerometers either do not
allow for chip-scale integration or require bulky test masses. Here we
demonstrate an optomechanical accelerometer that employs ultra-sensitive
all-optical displacement read-out using a planar photonic crystal cavity
monolithically integrated with a nano-tethered test mass of high mechanical
Q-factor. This device architecture allows for full on-chip integration and
achieves a broadband acceleration resolution of 10 \mu g/rt-Hz, a bandwidth
greater than 20 kHz, and a dynamic range of 50 dB with sub-milliwatt optical
power requirements. Moreover, the nano-gram test masses used here allow for
optomechanical back-action in the form of cooling or the optical spring effect,
setting the stage for a new class of motional sensors.Comment: 16 pages, 9 figure
Probes on D3-D7 Quark-Gluon Plasmas
We study the holographic dual model of quenched flavors immersed in a
quark-gluon plasma with massless dynamical quarks in the Veneziano limit. This
is modeled by embedding a probe D7 brane in a background where the backreaction
of massless D7 branes has been taken into account. The background, and hence
the effects, are perturbative in the Veneziano parameter N_f/N_c, therefore
giving small shifts of all magnitudes like the constituent mass, the quark
condensate, and several transport coefficients. We provide qualitative results
for the effect of flavor degrees of freedom on the probes. For example, the
meson melting temperature is enhanced, while the screening length is
diminished. The drag force is also enhanced.Comment: 31 pages, 17 figure
- …
