37,839 research outputs found

    Neural crest stem cells and their potential therapeutic applications

    Get PDF
    The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.postprin

    Fake news: a technological approach to proving the origins of content, using blockchains

    Get PDF
    In this paper, we introduce a prototype of an innovative technology for proving the origins of captured digital media. In an era of fake news, when someone shows us a video or picture of some event, how can we trust its authenticity? It seems the public no longer believe that traditional media is a reliable reference of fact, perhaps due, in part, to the onset of many diverse sources of conflicting information, via social media. Indeed, the issue of ‘fake’ reached a crescendo during the 2016 US Presidential Election, when the winner, Donald Trump, claimed that the New York Times was trying to discredit him by pushing disinformation. Current research into overcoming the problem of fake news does not focus on establishing the ownership of media resources used in such stories - the blockchain-based application introduced in this article is technology that is capable of indicating the authenticity of digital media. Put simply; by using the trust mechanisms of blockchain technology, the tool can show, beyond doubt, the provenance of any source of digital media, including images used out of context in attempts to mislead. Although the application is an early prototype and its capability to find fake resources is Peer Review Only/Not for Distributionsomewhat limited, we outline future improvements that would overcome such limitations. Furthermore, we believe our application (and its use of blockchain technology and standardised metadata), introduces a novel approach to overcoming falsities in news reporting and the provenance of media resources used therein. However, while our application has the potential to be able to verify the originality of media resources, we believe technology is only capable of providing a partial solution to fake news. That is because it is incapable of proving the authenticity of a news story as a whole. We believe that takes human skills

    Assessment of Future Water Efficiency Measures

    Full text link
    The Victorian water utilities have been active in the implementation of water efficiency for many years. Similar to other jurisdictions this intensified during the Millennium drought. The approaches employed during the drought involved both individual and joint water utility initiatives, often in collaboration with the Victorian government. These initiatives covered both the residential and non-residential sectors and were supported by the important collaborative research initiated in 2003 under the $50m Smart Water Fund (now closed). This research report “Assessment of Future Water Efficiency Measures” has been developed by the Institute for Sustainable Futures (ISF), University of Technology Sydney, on behalf of the three Melbourne retailers, Melbourne Water, Barwon Water and the Department of Environment, Land, Water and Planning. The rapid study does not aim to be exhaustive but to begin to gather information to assist in taking stock of the current efficiency situation and to look on the horizon in terms of how efficiency might change. It aims to gather information that will be useful to assist in testing alternative potential scenarios of long term demand forecasts and new potential short and long term efficiency program opportunities that can be actioned when deemed appropriate into the future. There is significant additional conservation potential available as we look to the future in terms of new more efficient appliances and ways to interact with customers by tapping into new technical and behavioural opportunities

    Characterization of the fullerene derivative [60]PCBM, by high-field carbon, and two-dimensional NMR spectroscopy, coupled with DFT simulations

    Get PDF
    High-resolution (600 MHz) 1H and 13C chemical shift and 2D HETCOR NMR spectra of [60]PCBM were recorded. Resonances from every carbon atom of the ester, phenyl and cyclo-fullerenyl groups, were fully accounted. Assignments of the fullerene cyclopropa-ring, and all phenyl and ester carbons to their respective resonances were based on a HETCOR 2D NMR spectrum. Remaining fullerene assignments were made to a high level of confidence with the aid of an ωB97X hybrid HF/DFT simulation of the 13C NMR spectrum employing a triple zeta Dunning-type basis set. The best result was obtained with the range-separation parameter ω set effectively to zero. This indicates that the fraction of HF in the HF/DFT hybrid at very short range is the dominant factor in achieving good NMR results, that ωB97X with its 15.77% HF fraction at rij = 0 seems very well suited, and that allowing the HF fraction to increase with range is not particularly beneficial. The resulting spectrum had a remarkable qualitative agreement with experiment with a very low mean absolute error for fullerene carbons of 0.09 ppm, which was considerably lower than the 0.28 ppm of the more commonly used B3LYP/6-31G(d,p) method

    iMAP: implicit mapping and positioning in real-time

    Get PDF
    We show for the first time that a multilayer perceptron (MLP) can serve as the only scene representation in a real-time SLAM system for a handheld RGB-D camera. Our network is trained in live operation without prior data, building a dense, scene-specific implicit 3D model of occupancy and colour which is also immediately used for tracking.Achieving real-time SLAM via continual training of a neural network against a live image stream requires significant innovation. Our iMAP algorithm uses a keyframe structure and multi-processing computation flow, with dynamic information-guided pixel sampling for speed, with tracking at 10 Hz and global map updating at 2 Hz. The advantages of an implicit MLP over standard dense SLAM techniques include efficient geometry representation with automatic detail control and smooth, plausible filling-in of unobserved regions such as the back surfaces of objects

    Pyrmont-Ultimo Precinct (PUP) Scale Organics Management Scoping Study

    Full text link
    This report, the “Pyrmont Ultimo Precinct (PUP) Scale Organics Management Scoping Study” has been prepared by the Institute for Sustainable Futures (ISF), University of Technology Sydney (UTS). The research, conducted by ISF and funded through a collaboration between Sydney Water Corporation (SWC) and the NSW Environment Protection Authority (EPA), has investigated at a high level, a suite of innovative organic waste management options that could potentially be piloted in Pyrmont-Ultimo, currently the densest urban area in Australia. The Pyrmont-Ultimo precinct (PUP), encompassing Pyrmont, Ultimo and the newly developed Central Park, has been specifically chosen due to the significant potential in the area, existing network of sustainability practitioners (i.e. Smart Locale1) and ISF’s/UTS’s direct involvement in research in food waste management

    Repeatability of quantitative18F-FLT uptake measurements in solid tumors: an individual patient data multi-center meta-analysis

    Get PDF
    INTRODUCTION: 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) positron emission tomography (PET) provides a non-invasive method to assess cellular proliferation and response to antitumor therapy. Quantitative18F-FLT uptake metrics are being used for evaluation of proliferative response in investigational setting, however multi-center repeatability needs to be established. The aim of this study was to determine the repeatability of18F-FLT tumor uptake metrics by re-analyzing individual patient data from previously published reports using the same tumor segmentation method and repeatability metrics across cohorts. METHODS: A systematic search in PubMed, EMBASE.com and the Cochrane Library from inception-October 2016 yielded five18F-FLT repeatability cohorts in solid tumors.18F-FLT avid lesions were delineated using a 50% isocontour adapted for local background on test and retest scans. SUVmax, SUVmean, SUVpeak, proliferative volume and total lesion uptake (TLU) were calculated. Repeatability was assessed using the repeatability coefficient (RC = 1.96 × SD of test-retest differences), linear regression analysis, and the intra-class correlation coefficient (ICC). The impact of different lesion selection criteria was also evaluated. RESULTS: Images from four cohorts containing 30 patients with 52 lesions were obtained and analyzed (ten in breast cancer, nine in head and neck squamous cell carcinoma, and 33 in non-small cell lung cancer patients). A good correlation was found between test-retest data for all18F-FLT uptake metrics (R2 ≥ 0.93; ICC ≥ 0.96). Best repeatability was found for SUVpeak(RC: 23.1%), without significant differences in RC between different SUV metrics. Repeatability of proliferative volume (RC: 36.0%) and TLU (RC: 36.4%) was worse than SUV. Lesion selection methods based on SUVmax ≥ 4.0 improved the repeatability of volumetric metrics (RC: 26-28%), but did not affect the repeatability of SUV metrics. CONCLUSIONS: In multi-center studies, differences ≥ 25% in18F-FLT SUV metrics likely represent a true change in tumor uptake. Larger differences are required for FLT metrics comprising volume estimates when no lesion selection criteria are applied
    corecore