630 research outputs found

    Quantum operations with indefinite time direction

    Full text link
    The fundamental dynamics of quantum particles is neutral with respect to the arrow of time. And yet, our experiments are not: we observe quantum systems evolving from the past to the future, but not the other way round. A fundamental question is whether it is in principle possible to conceive operations that probe quantum processes in the backward direction, from the future to the past, or in more general combinations of the forward and the backward direction. To answer this question, we characterize the largest set of bidirectional quantum processes, and we show that quantum theory is compatible with the existence of operations that interact with these processes in an indefinite time direction. As an explicit example, we construct an operation that adds quantum control to the time direction of an unknown dynamics. This operation, called the quantum time flip, exhibits an information-theoretic advantage over all possible operations with definite time direction, even including operations with indefinite causal order. It can realised probabilistically using quantum teleportation, and can be reproduced experimentally with photonic systems, shedding light on exotic scenarios in which the arrow of time is subject to quantum indefiniteness.Comment: 6 + 21 pages, 4 figures, new results adde

    Continual Learning of Natural Language Processing Tasks: A Survey

    Full text link
    Continual learning (CL) is an emerging learning paradigm that aims to emulate the human capability of learning and accumulating knowledge continually without forgetting the previously learned knowledge and also transferring the knowledge to new tasks to learn them better. This survey presents a comprehensive review of the recent progress of CL in the NLP field. It covers (1) all CL settings with a taxonomy of existing techniques. Besides dealing with forgetting, it also focuses on (2) knowledge transfer, which is of particular importance to NLP. Both (1) and (2) are not mentioned in the existing survey. Finally, a list of future directions is also discussed

    Differentiable Frank-Wolfe Optimization Layer

    Full text link
    Differentiable optimization has received a significant amount of attention due to its foundational role in the domain of machine learning based on neural networks. The existing methods leverages the optimality conditions and implicit function theorem to obtain the Jacobian matrix of the output, which increases the computational cost and limits the application of differentiable optimization. In addition, some non-differentiable constraints lead to more challenges when using prior differentiable optimization layers. This paper proposes a differentiable layer, named Differentiable Frank-Wolfe Layer (DFWLayer), by rolling out the Frank-Wolfe method, a well-known optimization algorithm which can solve constrained optimization problems without projections and Hessian matrix computations, thus leading to a efficient way of dealing with large-scale problems. Theoretically, we establish a bound on the suboptimality gap of the DFWLayer in the context of l1-norm constraints. Experimental assessments demonstrate that the DFWLayer not only attains competitive accuracy in solutions and gradients but also consistently adheres to constraints. Moreover, it surpasses the baselines in both forward and backward computational speeds

    “Share for bargaining?”: A willingness model based on privacy computing theory

    Get PDF
    The use of mobile coupons to share for bargaining has become an important marketing method for merchants in the field of e-commerce. However, there are still some shortcomings in the existing research on consumers’ willingness to share mobile coupons. First of all, the use and sharing of mobile coupons are analyzed separately. Secondly, most of theories and models in this domain derive from the field of knowledge. Lastly, the influence of different platforms on consumers’ willingness to share are not considered. Therefore, this paper explores the influencing factors of consumers’ willingness to share mobile coupons in different platform scenarios from the perspective of privacy computing, and proposes six hypotheses to construct a structural equation model. Further analysis of 270 valid questionnaires obtained under five scenarios shows that users’ perceived economic benefits and perceived social benefits have a significant positive impact on users’ willingness to share for bargaining, users’ perceived privacy risks have no significant impact on users’ willingness to share for bargaining, and users’ perceived social risks have a significant negative impact on users’ willingness to share for bargaining. Low share for bargaining links will weaken the negative impact of perceived social risk on sharing willingness

    Exploring New Paths for the International Outreach of Zigong Dinosaur Lantern Festival on the Foundation of Chinese and Western Folk Cultural Exchange

    Get PDF
    This article aims to delineate the history and significance of the Zigong Lantern Festival, delving into its current limitations. It seeks to explore novel avenues for the international promotion of Chinese traditional folk culture, facilitating a more dynamic integration of the Zigong Dinosaur Lantern Festival into global cultural exchanges. The objective is to enhance the vibrancy of international cultural interactions and illuminate a new radiance for Chinese culture on the world stage

    Research on Multicultural Drama Education Based on Self-determination Theory: A Case Study of "Hamlet"

    Get PDF
    In a multicultural context, drama education, as a distinctive pedagogical paradigm, facilitates the achievement of educational objectives effectively. Compared to traditional classrooms, student-centered instruction based on self-determination theory places greater emphasis on nurturing students' intrinsic motivation for learning. This article uses the high school Chinese literature text "Hamlet" as a case study, applying the perspectives of autonomy, competence, and relatedness—the three psychological needs of self-determination theory—to various aspects of practical teaching. This approach constructs a framework for multicultural drama education

    Computationally Efficient Solution of Inverse Problem Using Bayesian Global Optimization Approach

    Get PDF
    Models have parameters that need to be determined from experimental observations. The problem of determining these parameters is known as the inverse problem or the model calibration problem. Solving inverse problems can be ubiquitously difficult because when the models involved are computationally expensive, one can only make a limited number of simulations. This work addresses the issue of solving an inverse problem with a limited data budget. Towards this end, we pose the inverse problem as the problem of minimizing a loss function that measures the discrepancy between model predictions and experimental measurements. Then, we employ Bayesian global optimization (BGO) to actively select the most informative simulations until either the expected improvement falls below a user defined threshold or our computational budget has been exhausted. We apply our results to the problem of estimating the kinetic rate coefficients modeling the catalytic conversion of nitrate to nitrogen using real experimental data

    Imprecision in Social Learning

    Get PDF
    • …
    corecore