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Abstract

This thesis investigates the role of imprecision in social learning, which consists of two critical
aspects: belief fusion with other agents and evidential updating based on direct evidence from the
environment. A decentralised collective learning problem is investigated in which a population
of agents attempts to learn the true state of the world and a novel parameterised fusion operator
that allows varying levels of imprecision is proposed. This is used to explore the effect of fusion
imprecision on learning performance in a series of agent-based simulations. In general, the
results suggest that imprecise fusion operators are optimal when the frequency of fusion is high
relative to the frequency with which evidence is obtained from the environment. A parallel
line of study explores the role of imprecision in evidential updating in a noisy environment.
Through agent-based simulations we demonstrate that the social learning model is robust to
imprecise evidence. Our results also show that certain kinds of imprecise evidence can enhance
the efficacy of the learning process in the presence of sensor errors. An integrated model is
then proposed, combining the advantages of both the parameterised fusion operator and novel
evidential updating strategies. We demonstrate that an integrated approach combining fusion
and evidential imprecision can further enhance the robustness and accuracy of social learning
processes. In addition, we compare various evidential updating methods for set-based belief and
then propose a hybrid updating method to combine the strength of different methods. We found
the hybrid methods can enhance the accuracy and robustness of social learning significantly with
more time required for the agents to reach consensus. These findings have significant implications
for designing intelligent systems capable of social learning and decentralised decision-making.
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Chapter 1

Introduction1

1.1 Overview

Social learning has been the subject of extensive research across various disciplines including

biology, psychology, and more recently, multi-agent artificial intelligence and swarm robotic

systems. Social learning is common in social animals where individuals learn collectively by

both observation and imitation of others [1]. In human societies, social learning also plays an

important role [2]. For example, humans acquire cultural traditions from family members and

students not only learn from teachers but also engage in group projects and discussions with

classmates, thus acquiring collaborative skills and diverse perspectives in school education. In

addition, peer review in academic and scientific communities is a form of social learning where

one’s work is evaluated and critiqued by others in the field, contributing to collective knowledge.

Through interacting with others, we have been able to pass down knowledge, speed up skill

acquisition and ensure the continuity of cultural traditions. Social insects, such as ants, bees,

and termites, use social learning to enhance their collective efforts. They excel at coordinating

large groups, whether constructing complex habitats or finding the most efficient paths to

gathering resources. For instance, a single ant might seem very limited in its capabilities, but a

colony, through the power of social learning and self-organisation, can construct architectural

marvels, wage wars, or optimise the foraging of food in surprisingly efficient ways. Ants, for

instance, employ pheromone trails as a form of environmental marking to communicate with

their peers about food sources or danger zones. This chemical communication allows them to

collectively make decisions about the shortest paths to food or to mobilise against threats [3].

Likewise, honeybees use the “waggle dance” as a form of information sharing by which foraging

bees can relay information regarding the location, distance, and quality of food sources to their

hive mates, ensuring the efficient allocation of foragers to plentiful nectar sources [4]. Their

achievements highlight the strength of social learning, which optimises collective behaviours.

1Part of this chapter has been submitted to Swarm Intelligence and can be accessed via Research Square:
https://doi.org/10.21203/rs.3.rs-2620622/v1; It may appear on the Turnitin report.
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For example, honeybee foragers are guided by social cues related to floral scents, conveyed

through trophallaxis. This process involves successful foragers transferring nectar samples

to nestmates, thereby disseminating information about nectar sources within the hive [4]. In

addition, one of the most significant challenges encountered by social insect colonies is relocating

their nests. This complex process involves the coordinated movement of hundreds to thousands

of individuals from their existing residence to the selected best new site out of a range of

potential ones. The decision-making process is driven by a few scout members who, through

a sophisticated mix of individual and social learning, manage to achieve consensus on the

optimal site[5]. Remarkably, this consensus is reached despite most individuals not evaluating

all possible locations themselves.

In the evolving landscape of artificial intelligence, the principles of social learning are

no longer reserved for biological systems and are instead finding newfound significance in

the development of robust, adaptive, and efficient multi-agent AI systems. As technological

advancements continue to push the boundaries of what AI can achieve, harnessing the collective

intelligence of agents through social learning is becoming paramount. Just as animals benefit from

the aggregated knowledge of the group, AI agents can significantly improve their performance,

accuracy, and adaptability when they integrate information from diverse sources within their

network. Such systems are able to solve complex tasks based on the coordinated behaviours and

shared discoveries of the entire system. As we move towards a future where autonomous systems

will be tasked with more complex, dynamic, and unpredictable scenarios, the ability for these

systems to learn socially could be the linchpin to their success. From managing smart cities to

exploring distant areas, the principles of social learning will undoubtedly play a significant role

in how multi-agent AI systems collaborate, make decisions, and adapt to complex, dynamic

environments.

In distributed autonomous systems, e.g. multi-agent systems (MAS) and swarm robotics,

a population of AI agents operate collaboratively, often dispersed across varied locations or

environments. Social learning finds pivotal applications in these aspects. One of the standout

benefits of applying social learning to distributed AI systems is the ability for agents to share

their beliefs. An insight or discovery by one agent can be rapidly disseminated, ensuring a

swift and collective advancement in knowledge. The collective ‘knowledge repository’ obtained

through social learning paves the way for collaborative problem-solving. Complex issues, which

are often beyond the capacity of a singular agent, can be collectively solved by a population of

agents thus effectively leveraging the collective intelligence and capacity of the entire system.

For instance, in traffic management, individual traffic lights could function as agents, each one

sensing and responding to local traffic conditions [6]. When networked together, these traffic

lights can optimise for broader goals, like minimising overall commute time across the city or

rerouting traffic during an emergency.

Social learning algorithms serve an important role in distributed systems like robotic swarms
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that are required to make collective decisions. In real-world scenarios, dynamic environments are

changing frequently and their dynamic nature requires a system that can adapt swiftly, while

remaining stable in its operation. These environments are complex, often involving multiple

interacting variables that change in real-time. Whether it’s fluctuating stock prices in the

financial markets, real-time health monitoring in intensive care units, or rapid resource allocation

in disaster-stricken areas, the need for swift and adaptive decision-making is paramount. With

advances in technology like AI, the complexities of these environments have only escalated.

Traditional centralised systems are increasingly less-equipped to manage this complexity and the

required speed of decision-making. In contrast, distributed systems and adaptive social learning

models offer a compelling solution [7, 8]. A distributed system can spread new information

more rapidly than a centralised system and this is thought to make them adaptive to the

changes in the environment [8]. It is observed that human individuals leaned heavily on social

learning to adapt spatial changes [9]. This agility in information flow is critical for localised,

real-time decision-making, allowing individual nodes to adapt to immediate changes in their

micro-environments. Such localised adaptability cumulatively results in a global system response

that is not just swift but also robust and resilient. In this way, distributed systems are not

merely keeping pace with the dynamic nature of real-world environments but are, in fact,

essential for effective functioning within them.

Distributed autonomous systems can be deployed in environments which are not well suited

(and perhaps even harmful) to humans, and just as humans and insects benefit from the

interaction with their peers, artificial agents in MAS can be designed to learn from one another,

allowing for sophisticated problem-solving strategies to emerge. For example, when seeking to

detect and monitor wildfires we can opt to deploy a multi-robot fire-fighting system instead

of sending human teams into danger [10]. Multi-robot teams have also been proposed for the

inspection of structural integrity in hazardous environments, such as nuclear power stations [11].

However, in these scenarios there is often only very limited contact between autonomous systems

and their human operators, with infrequent reporting and updating and often at great distances

due to the extreme environmental conditions. The systems therefore require greater degrees

of autonomy, such that they can make decisions and act based solely on the information they

gather in their environment. To facilitate this, agents will need to learn an accurate description

of their environment, on which the system can then base its future actions. For example, fig. 1.1

shows a wildfire search operation carried out by a swarm of Unmanned Aerial Vehicles (UAVs).

The swarm disperses across a disaster-affected area to collaboratively search for sites impacted

by the fire hazard. The robots explore the environment to acquire direct information and

communicate with each other to combine their beliefs and gather indirect information.

In this thesis, we will focus on distributed decision making problems in which agents attempt

to collectively identify the true state of the world. We employ a propositional model that a

state of the world s will be an allocation of truth values to a set of predefined propositions.

3
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Figure 1.1: The swarm disperses across a disaster-affected area to collaboratively search for sites
impacted by the fire hazard. The robots explore the environment to acquire direct information
and communicate with each other to combine their beliefs and gather indirect information.

In our model, we consider a proposition to represent a specific condition or variable of the

environment, each of which can either be true or false. For instance, in the context of a wild fire

search mission as shown in Figure 1.1, relevant propositions could include “there is a wildfire at

location 2” or “there are people at location 3.” These propositions serve as binary variables that

can either be true or false, capturing different aspects of the environment in which the system

operates. Given a set of n such predefined propositions, we can define a state of the world s as

an allocation of truth values to these n propositions. With n binary propositions, there are

2n possible states of the world. Each of these states corresponds to a unique combination of

truth values allocated to the n propositions. In a scenario with five relevant propositions, 25 or

32 possible states, i.e. distinct allocations of the truth values, could exist—ranging from all

propositions being true to all being false, or any intermediate combination thereof. Only one of

these allocations will reflect the actual, true state of the world. The true state of the world

then represents the correct allocation of truth values to the propositions. For example, the true

state of the world reflects where survivors and fire hazards are actually located in the wildfire

search scenario. This propositional model of social learning can be applied to a broad class of
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applications. For example, we could model the risk of an epidemic, e.g. COVID-19, for areas

around the world with a proposition of the form “this area is high risk” and the proposition

can either deemed true or false (this area is not high risk) by the agents (health agencies). The

true state of the world would then correspond to the actual risk profile across all areas. Agents

might then be different health authorities, which would share information between them and

obtain direct evidence based on data obtained about the region for which they are responsible.

The proposed model holds significant promise for swarm robotic applications, particularly in

tasks that involve selecting the optimal option from a set of alternatives or classifying multiple

sites when the total number of sites is predetermined. In such applications, the collective

intelligence and distributed sensing capabilities of the swarm can be harnessed to assess each

option or site in detail, pooling individual agents’ observations to form a comprehensive

understanding. This approach is particularly advantageous in scenarios where the environment

may not be rapidly changing, but where the accuracy and reliability of the collected data are

critical. For example, in environmental conservation efforts, a swarm of drones could evaluate

various areas for a reforestation project, determining which site offers the optimal conditions

based on soil quality, water availability, and existing vegetation. Furthermore, swarms of

sensor-equipped drones or robots could be deployed to monitor pollutants in the environment.

These swarms could cover large areas and navigate complex terrain to collect data from

various locations simultaneously in order to identify and signal pollutants. The proposed model

enhances these applications by ensuring that the swarm’s collective decision reflects a balanced

consideration of all available evidence, effectively managing the uncertainties and variabilities

inherent in real-world data. This capability not only improves the quality of the decision-making

process but also increases the efficiency and effectiveness of the swarm’s operations in static

application contexts.

Since the environment in which distributed systems will be deployed is likely to be complex

and agents have limited sensory and information representation capacities, they will tend to

be susceptible to noise. In the social learning literature, noise is usually modelled as Gaussian

variation from a true value [12, 13] or as a probability of receiving false evidence [14]. In

this paper we differentiate noise of this form, which we hereafter refer to as inaccuracy, from

imprecision and we show that the latter also has an important and potential useful effect on

social learning. Specifically, noise as outlined above, relates to the accuracy of the evidence

obtained with reference to the true state of the world. In other words, evidence is accurate if it

is consistent with the true state of the world and inaccurate otherwise. In contrast, evidence is

imprecise if it fails to identify a single state of the world. From this perspective it is possible

for evidence to be both accurate and imprecise since this simply means that the evidence is

consistent with the true state of the world but does not uniquely identify it. In other words,

the evidence is consistent with a number of possible states including the true state. In this case

the degree of precision of the evidence is dependent on the number of states that are consistent
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Figure 1.2: Accuracy and precision. From left to right: accurate and precise; accurate and
imprecise; inaccurate and imprecise; inaccurate and precise.

with it.

From this perspective, we consider noise to consist of both inaccuracy and imprecision,

where the former describes the difference between the evidence gathered and the ground truth,

and the latter is where evidence fails to identify a single state of the world. Imprecise evidence

is inherently less informative than precise evidence, but this means that in the presence of

errors it is more likely to be consistent with the true state of the world. Figure 1.2 illustrates

the distinction between accuracy and precision for noisy evidence in relation to the ground

truth. The centre of the rings represents the true state of the world and an orange circle depicts

the evidence gathered by an agent. The accuracy of the evidence then depends on the distance

of the centre of the circle to the true state, while the imprecision of the evidence depends

on the area of the circle. Hence, imprecision and inaccuracy are independent features of the

evidence. Increasing/decreasing the radius of the circle results in an increase/decrease in the

precision of the evidence, respectively, but the accuracy of the evidence remains unchanged.

On the other hand, the distance from the centre of the orange circle to the inner-most ring

is inversely proportional to the accuracy of the evidence (i.e., the greater the distance, the

lower the accuracy). Imprecision naturally arises during social learning in light of the fact

that evidence and beliefs are often only partial. In other words, agents often do not have

sufficient knowledge to make predictions about the full state of the world. For example, in

Figure 1.1 agents visit specific locations and obtain evidence about whether there is a fire at

that location. However, such evidence does nothing to inform them about other locations. In

other words, agents may have received sufficient information to predict the truth or falsity of

some propositions, while being unable to say anything about the remaining propositions. In

this paper, imprecision is the size of evidence or belief set, i.e. the number of possible states

consistent with the evidence or agent’s belief, and can be a parameter of our model. Accuracy,

on the other hand, is simply a measure of the distance from an agent’s current beliefs to the

true state of the world and is assumed to be a feature of the interaction between the agents’

sensors and the environment.

Epistemic sets are a direct way to represent the beliefs and evidence with varying levels
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of imprecision, in which an agent’s belief is represented by the set of states or worlds that it

regards as being possible [15]. Therefore, the cardinality of the set is a straightforward measure

of the imprecision of an agent’s belief or evidence. As such, we adopt a set-based learning model

in which beliefs about the world and evidence collected by agents are represented by sets of

states. In particular, we assume that agents’ beliefs take the form of sets of possible states of

the world where each state is a complete allocation of truth values to the propositions under

consideration. For example, let l1 and l2 denote propositions asserting that there is a wildfire

in locations 1 and 2, respectively. In this context a state of the world is a pair of truth values,

each of which is either 0 or 1, indicating whether l1 and l2 are false or true. An agent‘s belief

B can be {⟨1, 1⟩, ⟨1, 0⟩}, indicating that the agent is certain that there is a wildfire in l1 but

uncertain if there is one in l2. Epistemic sets are one of the simplest formalism for representing

uncertainty and imprecision in AI. The use of sets of states to represent beliefs dates back to

Hintikka’s possible worlds semantics [16], with some early applications in AI and computer

science found in [17] and [18]. More recently, epistemic sets have also been applied to a simple

social learning problem using an abstract agent-based simulation [19]. Using epistemic sets

allows for agents to hold beliefs of varying levels of precision, which has the potential to improve

system-level robustness to noise compared with other simpler models, e.g., the weighted voter

model [20, 21]. Opinion diffusion logic is relevant in this context as it sometimes employs a

semantic model of belief equivalent to epistemic sets [22]. In particular, an agent’s belief or

evidence can be represented by a logical formula F which has a model theoretic representation

equivalent to the epistemic set consisting of those states (or interpretations) in which F is

true [23]. The imprecision of an epistemic set then depends on the generality of the associated

formula. In this case evidence l1 ∧ l2 asserts that there are wildfires in both locations, while

evidence l1 ∨ l2 asserts that there is a wildfire in at least one of the two locations. Clearly the

second formula is more general than the first and this is reflected in the relative imprecision of

the associated epistemic sets as given by {⟨1, 1⟩} and {⟨1, 1⟩, ⟨1, 0⟩, ⟨0, 1⟩}, respectively.

In addition to diffusion logic models, another approach for exploring imprecision of agent’s

belief is Dempster-Shafer (DS) theory. The foundational concepts of the Dempster-Shafer theory

of belief functions can be traced back to the work of Shafer [24], which is built upon Dempster’s

earlier ideas on lower and upper probabilities [25]. Unlike traditional Bayesian probability,

which assigns precise probabilities to hypotheses, DS theory provides a way to allocate ‘belief

mass’ values to sets of hypotheses. For example, in a medical diagnostic context, for instance,

consider a patient showing symptoms A and B. In a conventional probabilistic framework, a

probability might be allocated to the probability that the patient has a specific Disease X.

However, with Dempster-Shafer theory, we can assign belief mass not solely to Disease X but to

any set of diseases that could collectively explain symptoms A and B. This provides a approach

that captures the inherent uncertainty and imprecision in medical diagnoses, especially when

diagnostic are not definitive. In DS theory, belief and plausibility functions are utilised to
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quantify uncertainty.The belief function represents the minimum amount of belief committed

to a set given the available evidence. The plausibility function is a complementary measure

to the belief function and provides an upper bound on the amount of belief that could be

committed to a particular set when taking into account all the evidence that does not reject it.

DS theory is closely related to the broader concept of imprecise probability theory which also

aims to model uncertainty and imprecision more effectively than classical probability theory.

In imprecise probability theory, a single hypothesis is often quantified by a set of probability

measures, specifically by an upper and a lower bound. The upper probability serves as a

conservative estimate that accounts for the maximum extent of belief/confidence associated

with the hypothesis, whereas the lower probability provides a more optimistic measure, capturing

the minimal level of belief. DS theory can be seen as a special case within this framework, where

the belief measure serves as the lower probability and the plausibility measure serves as the

upper probability. However, the focus of this work remains on epistemic sets. This is primarily

because epistemic sets are less expressive than DS theory and offer a simpler yet effective

model for capturing the essence of imprecision in social learning contexts. While DS theory

provides a comprehensive and nuanced framework, the straightforward nature of epistemic sets

allows for more intuitive understanding and easier implementation, especially in scenarios where

computational resources may be limited. Thus, our work will continue to explore the dynamics

of social learning through the lens of epistemic sets, offering insights into how imprecision can

affect collective decision-making.

We consider social learning in terms of two distinct processes; evidential updating and belief

fusion [26]. Evidential updating is the the process by which the robots/agents learn directly

from the environment, by updating their current beliefs based on evidence received from the

environment. In robotic applications evidence might take the form of signals received by various

sensor modalities, such as cameras, microphones, and ultra-sound sensors. For example, in

Figure 1.1 drones gather and processes direct sensory data detecting heat or smoke to determine

the presence of a fire. Belief fusion complements this by facilitating inter-agent communication

to merge these individual sensory findings and form a collective understanding of where fires

are located. For the scenario represented by Figure 1.1, each drone shares its beliefs with others

to integrate their individual findings. In a more general multi-agent context, evidence could

take the form of data received directly relating to a particular instance or set of instances. The

interaction between evidential updating and belief fusion has been studied based on the well

known bounded confidence model [27], which suggests that the whole society will end up with

a consensus on the truth with appropriate confidence level and evidence rate(so called the

strength of the attraction of the truth). In addition, in the context of social epistemology, [28]

argue that the communication between agents would significantly enhance the performance

in truth approximation due to the ability to correct errors while propagating information

across the population. For problems of this type it has been argued that approaches combining
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individual evidence collection and local fusion of beliefs between individuals are more robust to

noise and more efficient than those that rely on evidence collection only, since the fusion step

allows for evidence propagation and error correction across the whole system [12, 21, 28]. In

this thesis, we explore the impact of imprecision in both evidential updating and belief fusion

on social learning. To explore the former, we propose a belief fusion operator that yields various

levels of imprecise fusion results. For the latter, we present a model that accounts for varying

levels of imprecision in the evidence gathered by agents.

The exploration of imprecision within artificial multi-agent systems is driven by two primary

motivations. Firstly, there is an ongoing challenge in academic research to clearly differentiate

between the concepts of inaccuracy and imprecision, which are often treated interchangeably,

often treating them interchangeably despite their distinct implications for information processing

and decision-making. Secondly, empirical studies on social insects, such as ants and bees, reveal

that these organisms exploit imprecision to their advantage during tasks like food source

selection. For instance, it has been suggested in the literature that some social insects may

be able to adapt and even take advantage of imprecision to make more robust collective

decisions [29–31]. In this context it is therefore interesting to investigate if artificial multi-agent

systems can adapt to imprecise evidence and whether some forms of imprecise evidence may

even enhance learning in the presence of sensor error or other types of environmental noise. In

this thesis, we will propose a model in which the level of evidential imprecision can be controlled

by a Hamming distance based parameter and implement the model to investigate whether

artificial agents would be able to benefit from imprecise evidence.

As well as evidential updating imprecision can naturally play a role in fusion where, for

example, inconsistency between two agents beliefs could result in an imprecise fused belief. For

epistemic sets we can define belief fusion operators that work on the principle that disagreement

or inconsistency between agents results in more imprecise beliefs, while agreement between

agents increases precision. In this way [19] suggested the fusion process can help to both

propagate correct information while facilitating error correction provided that belief imprecision

is linked to evidence collection. In this thesis a parameterised fusion operator is introduced

that returns beliefs of varying levels of imprecision. This is used to explore the effect of fusion

imprecision on learning performance in a series of agent-based simulations.

1.2 Background

In this section, we introduce key concepts that are pivotal to the research presented in this

thesis. Specifically, we discuss the classical logic model used to represent the state of the

world, as well as the epistemic sets employed to model agents’ beliefs. We then introduce the

concept of consensus within multi-agent systems. To achieve consensus, agents must engage in

communication to fuse their individual beliefs. Accordingly, we introduce principles that guide
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various belief fusion methods.

Truth values, which are the outcomes of evaluating logical propositions as either ‘true’ or

‘false’, play a critical role in reasoning and decision-making in multi-agent systems (MAS).

While various logical frameworks such as multi-valued logics, fuzzy logic, and probabilistic

logics have been widely studied, the role of classic binary logic remains foundational. This

framework, often considered the simplest form of logic, offers both challenges and opportunities

in the context of MAS. Classical logic, a cornerstone of mathematical theory and Artificial

Intelligence, is the study of the principles and criteria of valid inference and demonstration.

Classic binary logic restricts propositions to two states: true or false. This Boolean framework is

named after George Boole, who laid its mathematical foundations in the 19th century. The power

of this logic lies in its simplicity and computational efficiency, allowing for clear, unambiguous

reasoning. In classical logic, the syntax consists of a set of well-formed formulas that obey

specific structural rules. These formulas are built from atomic formulas and logical connectives

like ”and” (∧), ”or” (∨), ”not” (¬), ”implies” (⇒), and ”if and only if” (⇔). Semantics, on the

other hand, interprets these syntactic elements to produce meaning. For example, truth tables

are a semantic tool that defines the truth value of complex formulas based on the truth values

of their atomic components. A defining feature of classical logic is the Principle of Bivalence,

which asserts that every declarative statement is either true or false but not both. Classical logic

involves various rules of inference like Modus Ponens, Modus Tollens, and Syllogism, which

provide the formal machinery for logical reasoning. These rules are the building blocks of logical

proofs and algorithmic problem-solving. Classical logic is broadly divided into propositional

logic and predicate logic. Propositional logic deals with simple declarative propositions without

considering the internal structure of the sentences. Predicate logic, on the other hand, dives

deeper into the internal structure, focusing on subjects and predicates, and allows for more

expressive statements involving variables and quantifiers. In today’s world, classical logic has

vast applications ranging from philosophy and mathematics to computer science and artificial

intelligence. Its role in formal languages, database theory, and multi-agent systems is particularly

significant.

Propositional logic is a subfield of classical logic and is fundamental to computer science,

philosophy, mathematics, and even linguistics [32]. Propositional logic has become instrumental

in various scientific domains, including multi-agents systems. In multi-agent systems, agents use

propositional logic for decision-making, negotiation, and communication. It provides a formal

framework for agents to represent knowledge and reason about the environment in terms of

a set of propositions. For example, we assume p1 is it will be rainy and p2 is the train will be

cancelled. If an agent deems that it will be rainy and the train will not be cancelled, using

classical binary propositional logic, the agent’s belief can be represented by {p1 = 1, p2 = 0}. In

the case that another agent believes that it will be rainy and the train will be cancelled, her

belief is then {p1 = 1, p2 = 1}. Some argue that the strict true-false framework can sometimes
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be too restrictive for capturing borderline cases where the proposition is neither absolutely true

or false [33]. Borderline cases are inherent for vague propositions, such as ’the box is heavy’ or

’the phone is expensive’. A popular way to represent such borderline cases is to use three-valued

logic [34] which introducing a boundary value of propositions, for example, the agent may

belief that raining or not raining are both possible, i.e. p1 = 1
2 . Three-valued models can also

represent partial Boolean models [35], in which not all the truth values of the propositions are

known. The natural generalisation of partial models consists of epistemic sets, understood as

non-empty subsets of interpretations of a Boolean language. For example, {p1 = 1
2 , p2 = 1}

can be represented by {(1, 1), (0, 1)}. However, the three-valued model may overestimate the

imprecision of the agent belief, for example, {p1 = 1
2 , p2 = 1

2} can be any one of {(1, 1), (0, 0)},

{(1, 0), (0, 1)}, {(1, 1), (0, 0), (1, 0), {(1, 1), (0, 0), (1, 0), (0, 1)}, and the latter of these is

much more imprecise than the former. In this example, we see that a model employing sets of

allocations based on classical Boolean truth values is more effective at characterising various

degrees of imprecision. For the research outlined in this thesis, we apply epistemic sets composed

of states of the world to represent an agent’s beliefs. This approach effectively captures the

full extent of the imprecision of an agent’s belief with a cost of more complexity. In epistemic

sets based model, an agent has 22
n

possible beliefs rather than 3n for the three-valued model

and therefore it is more complex than the three-valued model for n . On the other hand,

epistemic sets avoid some of the complexity associated with other more expressive frameworks,

e.g. D.S. theory. Although D.S. theory is more expressive for the ’probabilities’ associated

with the belief sets, it is computationally more complex than the epistemic set models as it

involves uncountable possible beliefs (mass functions). Therefore, epistemic sets is an effective

middle ground between expressiveness and computational complexity, making them particularly

well-suited for the analysis of imprecision in social learning scenarios.

In the context of multi-agent systems, classical propositional logic plays an essential role

in formalising the conditions under which consensus can be achieved. Agents may use logical

values or formulas to represent their beliefs, goals, or the state of the world, and logical inference

to update these beliefs as they receive new information. Logical frameworks provide a rigorous

basis for analysing the properties of consensus algorithms, such as their correctness or resilience

to failures. Achieving consensus becomes more challenging as the size of the system increases,

or when the system is subject to uncertainties, time-delays, or malicious attacks. There are still

many open questions in the field, such as how to achieve consensus in a system with dynamically

changing environments, how agents are connected and can communicate, or how to ensure that

consensus is reached quickly and efficiently in very large systems. Another avenue of research is

exploring alternative logical systems, like fuzzy logic or probabilistic logic, to provide a more

fully integrated approach to uncertainty and imprecision.

In a multi-agent system, agents often need to collaborate to accomplish a shared task or

solve a common problem. To do so effectively, they must reach a consensus on certain matters,
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like what action to take or how to allocate resources [36]. The concept of consensus is thus

fundamental in multi-agent systems, especially in applications where autonomous agents are

expected to operate in a decentralised manner [37]. The problem of achieving consensus is often

modelled mathematically. For instance, if each agent i has a belief Bi, the system achieves

consensus if Bi becomes equal for all i after some finite or infinite time. Consensus is often

studied in the context of a social network in the form of a graph where nodes are agents and

edges represent communication channels between them [38]. Different algorithms and protocols

have been developed to achieve consensus, ranging from simple averaging algorithms to more

complex methods involving optimisation techniques or game theory [39]. In this thesis, we

explore how a population of agents identifies the true state of the world by achieving consensus

on a singleton belief set which only holds one possible state of the world. Specifically, this

singleton precise belief is defined as the allocation of truth values to n propositions. Reaching a

precise consensus is critical in some multi-agent systems, for example, in a network of self-driving

cars navigating a busy intersection, each car needs to precisely understand the state of the

traffic light and the positions of other vehicles to avoid collisions. In this study, ‘consensus’ refers

to the requirement that this precise singleton belief is shared uniformly across all agents within

the population. In order to share beliefs and then to achieve consensus, agents are required to

communicate with each other via some belief fusion strategies to handle disagreements.

Belief fusion is the process of combining uncertain or incomplete information from multiple

sources to extract a more accurate collective understanding. [40]. The principles of optimism,

unanimity, and minimal commitment serve as guiding rules to ensure that the fusion from

different sources produces outcomes that are both reliable and robust [15]. In this thesis we

will focus on belief fusion of two agents, of which beliefs are modelled as epistemic sets. We

denote the fused belief of a pair of agents with beliefs B1 and B2 as f(B1, B2), the principles

that fusion rule should satisfy are as follows:

• Optimism: B1 ∩B2 ̸= ∅ =⇒ f(B1, B2) ⊆ B1 ∧ f(B1, B2) ⊆ B2

The principle of optimism requires that the fusion outcome should be keeping as much

information as possible from either source, i.e. being a subset of both agents’ beliefs, when

they are consistent. This principle asuumes that both agents are reliable and trustworthy.

Capitalising on the reliability of the agents, for optimism the fusion rule aims to produce a

fused belief that is as precise as possible. This precision can be particularly important when

addressing complex or ambiguous issues where each piece of information may be crucial.

• Unanimity: B1 ∩B2 ⊆ f(B1, B2) ⊆ B1 ∪B2

Unanimity stipulates that the fusion outcome should preserve any possibility or impossibility

that both agents agree upon; in other words, the fused set must be a superset of the intersection

and a subset of the union of the two agents’ beliefs. This principle ensures that the fusion results
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include what is unanimously deemed possible while exclude what is unanimously considered

impossible by the fusion pair.

• Minimal commitment: f(B1, B2) is the most imprecise subset of all possible state of

the world satisfying Optimism and Unanimity

Minimal commitment dictates that the fusion should remain the largest subset when the

other two principles hold, i.e. the fusion results should include all possible states of world

without breaking the other two principles. The principle of minimal commitment aims to keep

the fused set of beliefs as imprecise as possible to maintain flexibility and reduce the risk of

errors. In other words, it avoids making unwarranted assumptions by preserving a level of

imprecision, allowing the system to adapt more easily to new information.

When dealing with set-based beliefs from two sources, the only canonical fusion rule that

satisfies the criteria of optimism, unanimity, and minimal commitment is to take the intersection

when the sets are consistent and the union when they are not [15]. In this thesis, we will provide

a formal definition of the fusion operator as described in [15] in social learning context and

adopt it as the standard operator. In real-world scenarios, the sources of fusion may not be

reliable, especially in environments where the information is not accurately received by agents.

In order to explore the role of imprecision to deal with such inaccuracy, we then parameterise

the standard fusion operator and propose a new one designed to yield more imprecise fusion

outcomes, with breaking the principle of optimism.

1.3 Related Work

Collective decision making

Collective decision making refers to the process where a group of agents collectively reaches

a decision which can either be selecting an optimal option or determining a suitable course

of action. For example, honeybees collectively choose and commit to a single suitable nectar

site using collective and distributed information processing[41] while fish and birds moves

collectively as groups using local interactions with their neighbours[42]. These two types of

collective behaviours are classified as consensus achievement and task allocation [43]. Inspired

by the animal behaviours, decentralised social learning and decision-making are well-studied

tasks in multi-agent and swarm robotic systems. One common family of problems considered

which have influenced this research are best-of-n problems, in which a population of robots

must collectively identify the best out of n distinct options on the basis of local interactions

and limited feedback [44]. In the literature on collective decision making, options often have

associated quality values. These values can take a variety of forms, such as the brightness of

lights [44, 45], intensity of colours [12], the dimensions of specific areas [46], or the proportions

of a particular feature within a defined space [47]. Quality values can also be modelled directly
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as numbers [12, 19, 47] and based on these quantities agents form beliefs about the best option.

This type of problem is often explored within the confines of a binary scenario, where n = 2.

Typically, the agents must decide between two options based on certain criteria, such as selecting

the option with the lowest cost or the highest quality [48]. However, in recent years, more

studies have started investigating more challenging best-of-n problems where n > 2 [12, 19, 49].

In this thesis we will instead focus on a more challenging collective problem on in which a

population of agents must learn and reach consensus on the truth values of each proposition

being investigated (i.e., the true state of the world which will be defined in Chapter 2) rather

than simply identifying the best out of a set of n alternatives. In cases where n = 2, the problems

of best-of-n is essentially converge to the same issue as the state of the world problems with 1

propositions. This is because with only two alternatives, it can be represented by the proposition

‘Option 1 is the best’ , which inherently provides a complete description of that world’s state.

However, as n increases, the complexity of these problems diverges significantly, and it is this

more complex scenario that the thesis will explore. Identifying the best out of n alternatives may

not always be the most efficient approach, especially when comprehensive information is desired

on all options. For instance, during search and rescue operations, merely identifying the ‘best’

option could overlook other viable options. A more comprehensive understanding of all possible

options might be crucial to ensure optimal outcomes in such scenarios. Therefore, ranking-n

problems, as a variant of best-of-n problems have recently emerged into the domain of social

learning [50, 51]. Rather than only identifying the ‘best’ option out of n, this novel approach

seeks to understand how individuals or entities might socially learn the entire hierarchy or

‘ranking’ of the n options available. This perspective is particularly relevant in contexts where

understanding the ordinal relationships between choices is as important, if not more so, than

identifying the singular best option. For instance, in market analysis, a company might be

more interested in understanding the ranked preferences of consumers across a spectrum of

products, rather than just knowing the most popular product. The propositional model we

proposed in this thesis can also be applied to a preference learning problem when treating the

preference/partial order between every pair of options as a unique proposition. The state-of-the-

world encompasses a challenging general class of problems than either best-of-n or the ranking

problem. In particular, for n options the size of the space of possible answers is n, for best-of-n,

and n! for ranking problems. However, for a general n proposition problem the solution space

of possible states of the world is 2n.

Evidence and belief models

Social learning and collective decision-making are commonly viewed in the context of two

specific processes: evidential updating and belief fusion. Evidential updating is the mechanism

by which an agent updates its existing beliefs based on new evidence from the environment.

Belief fusion is the method through which agents exchange its knowledge with their peers and
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drives consensus. In this framework, how an agent’s beliefs are modelled becomes especially

crucial.

In multi-agent systems, the modelling of an agent’s belief is pivotal for decision-making.

The most direct way is to model agent’s belief as a proposition, ‘option i is the best option’ [52],

sometimes together with the corresponding quality value [13]. Based on this representation,

there are two primary strategies for belief updating: Direct Comparison and Cross Inhibition.

For the Direct Comparison approach, agents assess the quality values of their preferred option

against either the belief of another agent or newly acquired information. They subsequently

update their belief in favour of the option with superior quality. For Cross-inhibition agents’

beliefs shift from precise/certain to imprecise/uncertain when dealing with inconsistency such

that directly comparing quality values is not necessary. [13] used cross-inhibition to solve a

best-of-n problem of up to 12 options and shows that cross-inhibition is more robust to noisy

quality values than direct comparison. In this thesis, the proposed model also moves away from

using quality values of which obtaining accurate measurements in noisy environments can be

inherently challenging.

Another way to model agent belief is to use a probability distribution on the options and then

to use Bayesian updating where the agents refine the beliefs given new evidence [12]. The agent’s

belief can be an 1 × n vector representing the probabilities that the agent considers each of

options 1, . . . , n being the best option. Then agents can update their beliefs based on the Bayes’

Theorem using a preset likelihood and pool their beliefs of distributions by various pooling

operators [53]. Possibility theory is an alternative framework to represent agent’s belief in social

learning model’s.[54] introduced a methodology based on a possibility distribution, assigning a

degree of possibility to each set of possible states of the world. Compared to the probability

framework, the possibility measure provides both upper and lower probabilities respectively.

Results suggest that the possibility theory based method is more robust to environmental

inaccuracy in scenarios in which agents can rarely gather evidence [54].

These studies provide some evidence that in certain scenarios imprecise beliefs can enhance

performance in social learning. We see that the cross-inhibition model allows agents to hold

imprecise beliefs and is more robust to inaccuracy compared to the Direct comparison model [13].

A more imprecise version of probability method, the possibility theory based method, enhanced

the model’s robustness to noise and malfunction agents [54]. Furthermore, simulations in

[21] shows that a three-value model that allows the agent to hold an imprecise belief can be

more robust to the presence of malfunctioning or noisy individuals in the population than the

weighted voter model [20] with a cost of slower convergence.

In this thesis, we use epistemic sets as agents’ beliefs. The use of sets of states to represent

beliefs, referred to as epistemic sets, dates back to Hintikka’s possible worlds semantics [16]

and some early applications in AI and computer science can be found in [17] and [18]. More

recently, epistemic sets have been applied to the best-of-n collective learning problem [19].
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Using epistemic sets allows agents to hold beliefs of varying levels of imprecision, which has the

potential to improve system-level robustness to noise compared with other simpler models, e.g

the weighted voter model.

For belief fusion we make the distinction between symmetric and asymmetric methods.

For the former agents usually receive other agents’ beliefs and update its own independently,

such as majority rule [47] for which agent updates its belief to the majority of its neighbours’,

and the weighted voter model [20] for which agents adopts the belief of a neighbour with a

probability proportional to their weights. The latter is usually conducted within a pool, such as

a ranking voting model [51], in which an agent’s belief is modeled as a vector representing the

ranking of the options. Pairs of agents vote using inverse Borda count [55] to generate a fused

ranking vector.

When belief is modelled as probability, possibility, or epistemic sets, there are usually

various symmetric combination operators. For epistemic sets, there is a strong relationship

with Dempster-Shafer theory since in the latter beliefs can be thought of as being characterised

by mass functions defined over epistemic sets and therefore The fusion operators proposed for

Dempster-Shafer theory can also be applied to these epistemic sets. A large number of fusion

operators have been proposed in the literature, an overview of which is given by [56].

In this section, we reviewed belief and updating models for collective decision making studies

and found that a more imprecise belief representation framework may result in more accurate

and robust learning performance. In the next section, we will discuss more about imprecision

applied in the social learning models.

Imprecision in Learning

Imprecision refers to the inherent vagueness or lack of exactness in data or decision-making

processes. In multi-agent systems, this could mean inexact sensor readings, ambiguous commu-

nication between agents, or non-specific rules for action. The ability to deal with imprecision is

crucial for robust and effective operation, especially in environments where exact information is

either not available or too costly to obtain. Multi-agent systems often operate in real-world

scenarios that are fraught with uncertainty, inaccuracy, and imprecision. Addressing imprecision

appropriately can make systems more resilient, adaptable, and effective in achieving their goals.

In formal settings, imprecision can be represented by epistemic sets which contain more than one

possible state of the world. Dealing with imprecision introduces computational and conceptual

challenges. Algorithms need to be robust enough to handle imprecision but also efficient enough

to be practical. In this thesis we will focus on developing more efficient algorithms that are

robust to imprecision that emerges during social learning and on investigating how varying

levels of imprecision affect overall performance.

The idea that imprecise evidence can sometimes be beneficial in social learning is found in

the study of social insects[31, 57]. For example, the honeybee’s waggle dance to communicate
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information about potential food sources is imprecise in its direction indication, and this results

in variation in the angles indicated when the dance is repeated. This imprecision can be observed

in either a series of waggle runs by a single dancing bee or between individuals with there

typically being a variation of between 10° and 15°[29]. The “tuned error” hypothesis [58] states

that this imprecision is used for spreading recruits over a certain spatial configuration and

is selected for by natural selection. [59] reported experiments that supported the hypothesis

by finding smaller divergence angles in dances indicating potential home sites than in dances

indicating food sources. The former are always point locations and the latter are often patches.

However, other studies shed doubt on this hypothesis by suggesting that the imprecision of

honey bee dances is the result of physical constraints and the honeybees’ limited capacity

to perform what is a complex sensory task [41, 60, 61]. Despite the debate concerning this

hypothesis, simulation studies have suggested that an imprecision level of 10° is beneficial while

a higher degree of imprecision is only beneficial when the food source is scarce [57].

Ants have also been reported to take advantage of imprecision in environmental information

in order to adapt to dynamic environments. [31] suggested that the imprecision caused by

variation in the trail of ants following behaviour between individuals, as well as by the behaviour

of individuals over time, plays an important role in enabling the effective tracking of changes in

the environment. [30] suggests that the crucial role of imprecision is not tied to a particular

organism or species but can be relevant across a wide range of systems. In human behaviours,

imprecision is also valuable for swift adaptations to the dynamic environment and optimising

short-term predictability [62].

Communication constraints in Social Learning

In most agent-based collective learning models, agent communications are typically assumed to

be entirely stochastic. At each iteration, a predetermined number of agents are equally likely to

be selected into a pool to consolidate their beliefs. The size of this pool can range from as few

as 2 agents, as the models in studies such as [19, 21, 51], or can be determined based on specific

design parameters as discussed in [63]. However, in realistic robotic scenarios, setting a fixed

number of participants for a belief fusion event can be challenging. Therefore, in this thesis, we

probabilistically model the communication constraints, capturing the constraints inherent in

real-world robots and their operating environments.

In practical social learning scenarios, conventional wisdom suggests that highly connected

networks facilitate more efficient information dissemination [47, 64]. However, recent studies

have begun to challenge this prevailing viewpoint. Using small world network treating agents as

nodes and their communication links as edges, [38] suggests totally-connected networks result

in lower average accuracy with more time cost when compared to less connected networks and

limitation on the network connectivity improves the model’s robustness to inaccuracy. In a

swarm robotic scenario, [8] suggests that the constrained communication can enhance model’s
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adaptability to the dynamic environments.

1.4 Thesis outline

In this chapter, we have introduced several topics related to social learning and imprecision. We

have found in these studies that imprecision can play a positive role in the collective decision

making problems. Drawing on the insights from the studies highlighted in this chapter, it

becomes evident that imprecision in belief representations has potential for improving the

performance of collective decision-making or social learning models.

In the rest of this thesis we investigate a decentralised social learning problem in which a

population of agents attempts to learn the true state of the world based on direct evidence

from the environment and belief fusion carried out during local interactions between agents. We

particularly focus on the role of imprecision which is defined as the cardinality of a set that can

represent the agent’s beliefs or evidence received. We investigate the influence of imprecision in

both the evidential updating and belief fusion processes, which are two primary components of

the social learning model.

In Chapter 2 a parameterised fusion operator is introduced that returns beliefs of varying

levels of imprecision. This is used to explore the effect of fusion imprecision on learning

performance in a series of agent-based simulations. In this chapter we also described the

propositional social learning model that we also employ in Chapters 3 to 5. We carry out

agent-based simulations and then analyse the results in depth with a particular focus on how

performance varies for different levels of imprecision in the fusion operator under different

learning conditions.

Based on the social learning model proposed in Chapter 2, in Chapter 3 we introduce

an evidence model in which the evidence gathered by agents can exhibit varying degrees of

imprecision. We first explore this model through agent-based simulations to investigate the

robustness of the social learning model to evidence that varies in the levels of imprecision.

Furthermore, we also conduct multi-robot simulation experiments focusing on a location

classification task, in which the number of locations is greater than the number of robots. In

these robotic experiments, the evidence collected by each robot naturally varies in its degree

of imprecision. In order to investigate the potential benefits of evidential imprecision for the

social learning model, we introduce an imprecise evidence model based on a Hamming distance

neighbourhood surrounding an estimated state of the world. This estimated state is directly

derived from evidence from the environment. We then show that agents building in imprecision

of this kind into evidential updating can result in improved social learning performance, in

terms of accuracy and robustness to the environment.

In Chapter 4, we introduce an integrated model that combines the imprecise fusion operator

from Chapter 2 and the imprecise evidential updating model discussed in Chapter 3. The goal
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is to investigate how these two components work in tandem within the larger system. To this

end, we use a similar methodology to that employed in earlier chapters, to study the effects

of combined imprecision in both evidential and fusion processes. Through these experiments

we investigate how imprecision at different stages of social learning can influence the overall

system dynamics, including agents’ ability to reach consensus, robustness to noisy data, and to

make reliable collective decisions. The integration of imprecise mechanisms in both evidence

gathering and belief fusion processes seeks to provide a deeper understanding of how real-world

uncertainty and partial information can be navigated effectively.

In Chapter 5, we explore alternative approaches for evidential updating for different levels

of evidential imprecision. We begin by applying a well-known mathematical operator in evidence

theory, which leads more imprecise outcome of evidential updating when there is disagreement

between evidence received and the agent’s current belief. We then proceed to compare this

method with traditional updating strategies through simulation experiments. Based on our

findings, we propose a novel approach that combines the strengths of both methods. This new

strategy allows agents to hold ‘rough beliefs’, which are then incorporated into the belief fusion

process. We therefore blur the lines between belief fusion and evidential updating, creating

a more integrated model. We validate this hybrid model through simulations, assessing its

performance in terms of both decision-making speed and accuracy.

In the concluding Chapter 6, we summarise the key findings of our research with identifying

some remain challenges and discuss several possible avenues for future research on the topic.

1.5 Contributions

In this thesis, we contribute to the fields of social learning and multi-agent systems by developing

new models for evidential updating and belief fusion between pairs of agents, introducing

imprecise evidential updating method and imprecise fusion operators, and showcasing potential

practical applications. These efforts collectively enhance our understanding of the benefits

of incorporating imprecision into complex distributed decision-making systems. The main

contributions of this thesis are as follows:

• We use epistemic sets to model agent beliefs, allowing for the representation of imprecision

through the cardinality of evidence sets. This enables us to differentiate between impreci-

sion and error (inaccuracy). The former in our set-based model can be modelled directly

by the cardinality of the evidence/belief sets while the latter describes the difference

between the evidence gathered and the true state of the world.

• We show that the well-known intersection-union fusion operator results in effective social

learning across a range of scenarios in which there is erroneous and relatively limited

direct evidence in Chapter 2. Our results indicate that the accuracy of social learning is
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affected by the relationship between the relative frequency of evidential updating and

belief fusion. We then introduce a novel parameterised fusion operator that can return

beliefs of different levels of precision or imprecision. Our results indicate that imprecise

fusion operators leads to the best outcomes when belief fusion is more frequently compared

to evidential updating. If the frequency of belief fusion is relatively high compared to

evidential updating, optimal results are obtained by a more imprecise operator.

• In Chapter 3 we demonstrate that social learning is robust to varying levels of imprecise

evidence. A neighbourhood-based imprecise evidential updating model that intentionally

infuse imprecision to evidence is proposed and demonstrated to be beneficial for improving

the accuracy of social learning systems under certain conditions. Using agent-based

simulations, we establish that there exists an optimal level of evidential imprecision

that maximises both the speed of convergence and the overall accuracy of the system.

Importantly, this optimal level varies depending on the the level of evidential inaccuracy.

Additionally, we conduct a robustness analysis for different levels of system tolerance to

error, showing that different levels of evidential imprecision should be applied for various

application requirements.

• In Chapter 3 we also construct a multi-robot location classification problem for which

a small population of agents must solve a classification task with a greater number of

locations. Here, we take into account realistic constraints such as hardware limitations

and environmental conditions that could introduce imprecision in the evidence collected

by robots. Our simulation results indicate that our approach remains robust even in

the presence of noisy evidence and outperforms the expected error when the number of

robots is less than the number of locations under investigation. Our robot simulation

experiments therefore show that that our approach has strong potential to be applied to

location classification tasks conducted by multi-robot systems.

• In Chapter 4 our findings suggest that incorporating both imprecision in evidence and

belief fusion into the same model yields notable improvements in learning accuracy,

particularly in noisy conditions. The findings demonstrate the value of a combined

approach that incorporates imprecision in both evidential updating and belief fusion.

Furthermore, we observe trade-offs between speed and accuracy in the model. Specifically,

the optimal level of evidential updating that maximise accuracy also enhances speed.

However, the optimal fusion imprecision requires more time to reach a consensus compare

to the precise fusion.

• In Chapter 5, we identify the limitations of two established evidential updating methods,

i.e., their poor performance in high-error scenarios, specifically issues related to convergence

and low learning accuracy. To overcome the limitations, a novel evidential updating and

belief fusion approach is proposed. We then demonstrate that in high-error scenarios
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the new approach enhances the learning accuracy significantly at the cost of increased

learning time.
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Chapter 2

Imprecise Fusion in Social Learning1

In this chapter, a decentralised social learning problem is investigated in which a population of

agents attempts to learn the true state of the world based on direct evidence from the environ-

ment and belief fusion carried out during local interactions between agents. A parameterised

fusion operator is introduced that returns beliefs of varying levels of imprecision. This is used

to explore the effect of fusion imprecision on learning performance in a series of agent-based

simulations. In general, the results suggest that imprecise fusion operators are optimal when

the frequency of fusion is high relative to the frequency with which evidence is obtained from

the environment.

We will focus on a propositional model described in Chapter 1, in which agents attempt to

collectively identify the true state of the world in the form of the correct allocation of truth

values to a set of predefined propositions. In this chapter we formalise this model and then

investigate the model with n = 5 propositions so that there are 25 = 32 possible states. Each

state then corresponds to an allocation of truth values to the 5 propositional variables, where

only one allocation reflects the ground truth. We first formalise the set-based belief models

and then introduce an operator for belief fusion and a strategy of evidential updating, before

detailing simulation experiments in which this model is applied to social learning. Representing

beliefs by sets of states provides a natural way of modelling imprecision in terms of cardinality.

The higher the cardinality of a belief, i.e., the more states it deems to be possible, the more

imprecise that belief is. Hence, in this context a fusion operator is imprecise if it tends to result

in beliefs of high cardinality. Furthermore, we propose a Jaccard similarity-based threshold

fusion operator and explore the impact of imprecise fusion on the population-level learning

performance. Our results show that fusion imprecision can improve the accuracy social learning

when the agents can only receive evidence infrequently from environments.

An outline of the rest of the chapter is as follows: In the next section, we give an overview of

some relevant existing literature on collective learning and decision making. We then describe

1This chapter has been published on ALife 2021: https://doi.org/10.1162/isal_a_00407; It may appear
on the Turnitin report.
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a propositional model and introduce an imprecise operator for belief fusion and evidential

updating, before detailing simulation experiments in which this model is applied to collective

learning. The results from these simulation experiments are then considered in detail with a

particular focus on how they pertain to the use of imprecision in belief fusion for collective

learning. Finally, we give some conclusions and outline possible future directions.

2.1 Related Work

Belief fusion is studied within the broader context of information fusion, a field that encompasses

diverse applications, such as image fusion [65], robotic sensor fusion [66] and opinion diffusion

logics [23, 67]. In general, the fusion process provides a means of resolving inconsistencies

between different sources and hence achieving consensus. The fusion of agents’ beliefs can be

modelled by pairwise operators. Several such fusion operators have been proposed and [15]

introduces a number of desirable properties that any information fusion process should satisfy,

i.e. optimism, unanimity, and minimal commitment for set-based beliefs. In this chapter, we

propose a fusion operator for epistemic sets which results in different levels of imprecise fusion

results based on the one proposed by [68, eq. 56], which was proved to be the only pairwise

operator for set-based information items, which satisfies the desirable properties [15].

There are several well-established fusion strategies applied to collective decision-making

problems. A primary type of these strategies is voting-based methods. The majority rule,

for instance, is a straightforward method where the most commonly held belief among all

neighbours of an agent is selected as the fused belief [47]. Although simple, this method can

be effective under certain conditions, especially when the population of agents is large and

their individual beliefs are reasonably accurate. Another popular voting-based approach is the

weighted voter model [20, 21]. Unlike the majority rule, which use the belief of majority as the

fused belief directly, the weighted voter model is probabilistic with assigning varying degrees of

probability to selecting different beliefs based on the number of votes of each belief, i.e. the

proportion of agents within the neighbourhood that hold the belief. The truth value based

fusion model has been shown to be more robust to noise then the weighted voter model [21].

In addition to voting-based frameworks, agents may also engage in belief fusion with their

peers through fusion operators, typically involving a fixed number of agents for fusion. For

instance, in the study by Lee et al. [12], in which agents’ beliefs are modelled using probabilities,

agents update their beliefs based on Bayes’ theorem and engage in belief fusion using the

multi-hypothesis product operator [69]. This approach is particularly beneficial in environments

with noise and the frequent receipt by agents of erroneous quality values for different options.

Similarly, in belief models based on Possibility Theory or Dempster-Shafer Theory, pairwise

fusion operators can be employed [26, 54]. Possibility theory can also be interpret as a ’imprecise’

version of probability theory featured with upper and lower probabilities, which has been shown
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outperforming a similar probabilistic model when the evidence is not frequently received [54].

The robustness to evidential inaccuracy of several of these operators applied to the best-of-n

problem has been compared by [26]. In particular, the best performance under noisy conditions

was achieved by Yager’s operator [70] and by Dubois & Prade’s operator [68].

In this chapter we model the agent’s belief by sets of possible states and propose a pairwise

operator to investigate the impact and benefits of fusion imprecision. The operator proposed

work on the principle that higher levels of disagreement or inconsistency between agents’ beliefs

result in more imprecise fused beliefs, while agreement between agents increases precision. In

this way the fusion process can help to both propagate correct information while also correcting

errors [19].

2.2 Social Learning Model

In this section, we introduce a social learning model tailored for collective decision-making

in multi-agent systems. We first outline the set-based belief model in Section 2.2.1, followed

by the fusion operator Section 2.2.2. We then introduce an evidential updating strategy and

compare it with an more established method in Section 2.2.3

2.2.1 Belief Representation

Consider a population of agents attempting to collectively learn the state of their environment

which we assume can be described by a finite set of propositions P = {p1, ..., pn}. We assume

that the propositions are not changing during the learning process. From this perspective a

state s is the allocation of Boolean truth values to each of the propositions. In other words, a

state is a function s : P → {0, 1}n. For notational convenience we represent a state s by the

n-tuple ⟨s(p1), . . . , s(pn)⟩. Let S denote the set of all states so that |S| = 2n.

An agent’s belief B ⊆ S is then the set of states which the agent believes can possibly be

the true state s∗. We therefore represent uncertain beliefs as being subsets of S with cardinality

|B| > 1 while a singleton belief B = {s} means that the agent is certain that s is the true state.

We assume that agents adopt a closed-world assumption which in this context means assuming

that S covers all possible states of the world. Therefore, agents’ beliefs are constrained such that

B ̸= ∅ since it cannot be the case that all states in S are impossible. Note that a given belief

∅ ≠ B ⊆ S classifies each proposition pi as being either true, if s(pi) = 1 for all s ∈ B, false, if

s(pi) = 0 for all s in B, or uncertain otherwise. Hence, the more imprecise an agent’s belief the

more propositions they will tend to be uncertain about. This indicates a natural relationship

between the epistemic model of beliefs and three-valued approaches [21]. For example, consider

the search and rescue scenario with 5 location outlined above where pi denotes the proposition

‘casualties are in location i for i = 1, . . . , 5. Now consider the belief B given by,

B = {⟨1, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0⟩}
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In case this B corresponds to the belief that there are casualties either in location 1 or location

2 but not both, and there are no casualties in any other location. Therefore, according to B no

propositions are classified as being certainly true, p3, p4 and p5 are classified as being certainly

false, and p1 and p2 are uncertain.

2.2.2 Belief Fusion Operators

We now introduce a parameterized fusion operator for combining epistemic sets which returns

beliefs of varying levels of imprecision. This requires a measure of the similarity between

epistemic sets for which we use the well-known Jaccard similarity [71] defined as follows: For

B1, B2 ⊆ S,

(2.1) J(B1, B2) =
|B1 ∩B2|
|B1 ∪B2|

We now define the similarity threshold operator as follows: for γ ∈ [0, 1],

(2.2) B1 ⊙γ B2 =

{
B1 ∩B2 : J(B1, B2) > γ

B1 ∪B2 : J(B1, B2) ⩽ γ

For example, let B1 = {s1, s2, s3} and B2 = {s2, s3, s4, s5} then,

J(B1, B2) =
|{s2, s3}|

|{s1, s2, s3, s4, s5}|
=

2

5

and hence B1 ⊙γ B2 = {s2, s3} if γ < 2
5 and B1 ⊙γ B2 = {s1, s2, s3, s4, s5} for γ ⩾ 2

5 .

Note that for γ = 0 this operator corresponds to the intersection-union operator [68, eq. 56]

as given by:

B1 ⊙0 B2 =

{
B1 ∩B2 : B1 ∩B2 ̸= ∅

B1 ∪B2 : B1 ∩B2 = ∅
(2.3)

On the other hand, for γ = 1 we have that B1 ⊙1 B2 = B1 ∪ B2. In general, γ controls the

level of generality or precision of the operator such that for γ ⩽ γ′, B1 ⊙γ B2 ⊆ B1 ⊙γ′ B2

for all sets B1, B2 ⊆ S. The use of Jaccard similarity to deal with inconsistency has also been

proposed by [72] who applies similarity-based enlargement of the sets of interpretations to

resolve inconsistencies in fusion problems.

2.2.3 Evidential Updating Method

In addition to combining their beliefs with others, agents also gather evidence from the

environment. Here we assume that this evidence E takes the form of an assertion of the truth
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value of one proposition p1, . . . , pn, i.e., E = {s ∈ S : s(pi) = v} for some pi and where v ∈ {0, 1}.

Given E we then propose that an agent updates their belief B to B|E such that:

B|E = {s|E : s ∈ B}.(2.4)

and where,

s|E(pj) =

v : j = i

s(pj) : otherwise
(2.5)

In contrast to more established belief updating methods such as where

B|E =

B ∩ E : B ∩ E ̸= ∅

B : otherwise
(2.6)

as applied in [19], the above approach has the advantage that it preserves beliefs about

the propositions which are consistent with E. To see this consider the case where we have

two propositional variables and where B = {⟨1, 0⟩, ⟨0, 1⟩}, i.e., in this case both p1 and p2 are

uncertain since for both there are states in B where they are true and also states where they

are false. Suppose evidence E is “p1 is true”, then applying intersection-based updating results

in B|E = {⟨1, 0⟩} and therefore removes the uncertainty about p2. More specifically, according

to B, p2 is now certainly false. However, since E makes no reference to p2 this seems counter-

intuitive. In contrast applying our proposed updating method results in B|E = {⟨1, 0⟩, ⟨1, 1⟩},

hence preserving the uncertainty about p2. In general, provided that the proposition pi to which

the evidence pertains is classified uncertain by belief B then updating on the basis of eq. (2.4)

will result in more imprecise beliefs than updating on the basis of eq. (2.6). Less restrictive

updating of this kind can be advantageous in collective learning scenarios in which evidence

is noisy and where agents focus on investigating propositions about which they are currently

uncertain.

2.3 Agent-based Simulation Experiments

In this section, we present the results for a series of agent-based simulation experiments in which

a population of agents attempts to reach a consensus about a propositional state description of

the world. In practice, both evidence and agent interactions may be sparse or limited. Figure 2.1

shows the iterative model of social learning, which is modelled probabilistically as follows:

Each agent conducts evidential updating and belief fusion iteratively. During each iteration,

every agent starts from exploration state for which they randomly chooses a proposition about

which it is uncertain to investigate and has probability ρ (the evidence rate) of successfully

obtaining evidence from the environment, and the agent will stop collecting evidence if it
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Evidence received (ρ)

Evidence missed (1-ρ)
or agent' belief is certain

Attempt Fusing

Attempt Fusing

Fused (σ)

Not fused (1-σ)

Evidential Updating

Update belief with evidence

Maintain current belief

Belief Fusion

Fuse by operators

Maintain current belief

 

Figure 2.1: Diagram of a updating-fusion iteration. During the iteration, agents uncertain about
propositions seek evidence with success rate ρ and then all agents attempt fusing beliefs with
peers at a rate σ.

is certain about every proposition, i.e. it has a singleton belief. Agents also learn from the

evidence being gathered by their peers using belief fusion. Every agent in the population has

probability σ (the fusion rate) of being placed in a pool to fuse their belief with the belief of

another agent. Each agent within the pool will be randomly paired with another agent and

then each pair will combine their beliefs using the fusion operator in Equation (2.2). For every

pair, both agents will adopt the result of this fusion as their new belief. If the number of agents

in the pool is odd, then one agent will not take part in fusion. Such pairwise belief fusion is

applied in many similar models, such as in [19, 38]. Belief fusion of multiple sources is not

studied within the scope of this thesis. The parameter of fusion rate is used to realistically

simulate communication constraints within multi-agent systems, reflecting factors such as

limited bandwidth, resource conservation, signal interference, network scalability, and security

concerns, which are all prevalent in real-world scenarios. The fusion rate also serves as a control

mechanism for the frequency of belief updates in multi-agent systems. Limiting the frequency of

fusion, as identified in recent research [73], results in improved robustness to error in evidence.

There are 4 possible transitions, as shown in Figure 2.2. For example, with a probability of ρ×σ

the agent will both receive evidence and entering the fusion pool(represented by gray arrows).

In addition, we use the error rate ϵ as a simple model of environmental or sensor errors(the

evidential inaccuracy). We define error rate as a probability ϵ that the evidence received could

be incorrect. More specifically, let the true state be denoted by s∗ then if an agent receives

evidence about proposition pi, they will receive E = {s : s(pi) = s∗(pi)} with probability 1 − ϵ

and E = {s : s(pi) = 1 − s∗(pi)} with probability ϵ.

The population of agents are initialised to hold completely ignorant beliefs, i.e., B = S at

time t = 0. In other words, the agents are initialised as having no prior knowledge about the

world. Experiments are then run multiple times to reduce random variation of results.

We evaluate performance on this learning task using the average Hamming distance H from

the agents’ belief values to the true state s∗. Furthermore, without loss of generality, we assume
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E

U F

(1-ρ)(1-σ)

ρσ

ρ(1 − σ) (1 − ρ)σ

Figure 2.2: Transition Model of Social Learning: E, U, and F represent Exploration, Evidential Updating,
and Belief Fusion, respectively. Each possible transition is marked with its probability and is colour-coded.

that s∗ is such that s∗(pi) = 1 for i = 1, . . . , n. In this context, the Hamming distance between

states is defined as follows: Let s1 = ⟨s1(p1), . . . , s1(pn)⟩ and s2 = ⟨s2(p1), . . . , s2(pn)⟩ be two

states, then the Hamming distance between them is given by:

H(s1, s2) =
n∑

i=1

|s1(pi) − s2(pi)|(2.7)

For example, supposing s1 = ⟨1, 0, 0, 0, 0⟩ and s2 = ⟨0, 1, 0, 0, 0⟩, the Hamming distance

between s1 and s2 is H(s1, s2) = 2. We then extend this to give a normalised Hamming distance

between an epistemic set B ⊆ S and the true state of the world s∗ as follows:

H(B, s∗) =
1

|B|
1

n

∑
s∈B

H(s, s∗)(2.8)

Furthermore, we evaluate the performance at the population level as the average Hamming

distance between the population of agents A of size k, and s∗ such that:

H(A, s∗) =
1

k

∑
B∈A

H(B, s∗)(2.9)
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2.4 Results

In this section, we present the results obtained from agent-based simulation experiments

conducted to evaluate the performance and efficacy of the intersection-union fusion operator

in Section 2.4.1, and the imprecise operators in Section 2.4.2 in the context of our social learning

model. These results show the trade-offs and advantages of different fusion approaches within

multi-agent systems.

2.4.1 Results for the Intersection-Union Operator

In this section we present the simulation results of our model for social learning using the

intersection-union operator in Equation (2.3) to which we shall later compare the proposed

similarity threshold operator in Equation (2.2). Recent Studies usually found that an increase in

population size can improve the systems accuracy in noisy environments [19, 50, 63]. However,

these studies usually use a constant number of agents participating in belief fusion, the proportion

of actively fusing agents decreases as the population size grows and therefore the communication

frequency for individual agents decreases (fusion rate). In other physical simulations, a common

practice involves using a parameter such as communication range to model real-world constraints

on fusion [8]. However, in this case, with a fixed size for the simulation area, the “fusion rate”

of individuals can vary based on the population size, as agents may be more sparsely or densely

distributed. In our study, for a larger population, the fusion pool is also larger because the fusion

rate is fixed. In Figure 2.3 we see that the learning outcome is not sensitive to population size

k ∈ [20, 100] for different combinations of evidence and fusion rates. We choose the population

size k = 50 for all the experiments in this section, unless otherwise specified. Furthermore,

a comparison between Figure 2.3a and Figure 2.3d reveals significant disparities in learning

accuracy, suggesting that learning accuracy may be influenced by the relative relationship

between ρ and σ.

Figure 2.4 shows a heat map of the average Hamming distance H of the population’s beliefs

(from Equation (2.9)) to the true state s∗ after 3000 time steps, for varying ρ and ϵ. Here, a

darker colour indicates that the average belief of the population is at a lower distance from the

true state and therefore the population is performing better under these conditions, while a

lighter colour indicates a greater distance to the true state and poorer performance. For an

evidence rate 0.02 < ρ < 0.04 we see that increasing the evidence rate also leads to an increase

in robustness to different error rates in that good performance is maintained for higher values of

ϵ. However, when ρ > 0.04, the robustness to inaccuracy surprisingly decreases as the evidence

rate increases further. In these experiments, the fusion rate σ = 0.04 is fixed and relatively

low corresponding on average to only one fusion operation per time step. This suggests that

in noisy scenarios the relative frequency of fusion and evidential updating has an impact on

overall performance. We hypothesise that fusion plays an error-correcting role when ϵ is high
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(a) ρ = 0.1, σ = 0.1
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(b) ρ = 0.1, σ = 0.9
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(c) ρ = 0.9, σ = 0.9
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(d) ρ = 0.9, σ = 0.1

Figure 2.3: Distance to s∗ for population sizes k ∈ [5, 100] with {ρ, σ} ∈ {0.9, 0.1}2 and error rate
ϵ = 0.3 The 5th and 95th percentiles are presented. For each combination of evidence and fusion rates,
the performance is barely sensitive to k.
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Figure 2.4: Average distance H to the true state with fusion rate σ = 0.04. In this case, the
system exhibits optimal robustness to evidential inaccuracy at evidence rate ρ = 0.04, with
system performance declining at rates above and below it.
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Figure 2.5: Average distance H to the true state with error rate ϵ = 0.3 for different evidence
and error rates. When the evidence rate is low, less frequent belief fusion can improve the
accuracy for the learning model.
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Figure 2.6: Average distance H to the true state with evidence level ρ = 0.4. The system
exhibits optimal robustness to evidential inaccuracy at fusion rate σ = 0.32, with system
performance declining at rates above and below it.

[19, 21], but if evidence is obtained at too high a rate then fusion is not sufficiently frequent

to correct for the inaccuracy. On the other hand, if the evidence rate is too low then fusion

drives the system to consensus too quickly before there has been time for agents to receive a

sufficient amount of evidence to identify the true state. To investigate this directly, we now

vary the fusion rate σ and present the results in Figures 2.5 and 2.6.

Figure 2.5 shows population performance at t = 3000 for varying values of σ and ρ with the

fixed ϵ = 0.3 and k = 50. The figure suggests that lower evidence rates require a lower fusion

rate in order to achieve good performance and vice versa. We suggest that again this effect may

be due to the relative frequency of updating and fusion from the perspective of an individual

agent. More specifically, Figure 2.5 suggests that for a given evidence rate ρ there is an interval

of fusion rates σ for which optimal performance can be obtained. If the fusion rate is too high

relative to the evidence rate then the population converges too quickly before there is time

to collect sufficient evidence. On the other hand, if the fusion rate is too low relative to the

evidence rate then there is insufficient fusion to correct for the errors introduced by evidential

inaccuracy.

Figure 2.6 shows that higher error rates lead to smaller optimal intervals for σ. The

performance is poorer on the top left and right regions of the figure where the fusion rate is

either too low or too high respectively. Figure 2.7 shows H plotted against ρ
σ when ϵ = 0.3.

This suggests that performance is best when ρ
σ ∈ [2, 3], i.e., when the evidence rate is between 2

and 3 times the fusion rate. The average distance to the true state increases significantly more
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Figure 2.7: The average distance H to the true state against the ratio of evidential updating
to belief fusion ρ

σ , for a fixed error rate ϵ = 0.3. The system obtains optimal performance at
specific ratios ( ρ

σ ∈ [1, 4]) of evidence rate to error rate.

slowly when ρ
σ > 10 and H(A, s∗) tends to 0.25. We suggest that evidence updating dominates

in such cases so that fusion has little impact on the population and the distance to the true

state converges to ϵ = 0.3 as would be expected if learning is based only on evidential updating

without the error correction provided by fusion. Therefore, the performance of collective learning

in this case can potentially be optimised by controlling the relative frequency at which evidential

updating and fusion take place. Performance is relatively poor as ρ
σ tends to 0. In such cases it

is likely that beliefs across the population are converging before sufficient information becomes

available to the population in the form of direct evidence. The Intersection-Union Operator

operates on the basis of the optimism principle, which assumes that the beliefs of both agents

involved are reliable. As a result, the operator retains only the consistent elements between

the two beliefs, even if the overlap/consistency is minimal. When the consistency of agents is

minimal, the discontinuity of the operator can also be problematic in such situations since it can

lead to loss of information. For example, B1⊙B2 = {si} if B1 = {s1, ..., si} and B2 = {si, ..., sn},

while if B1 = {s1, ..., si} and B2 = {si+1, ..., sn} then B1 ⊙B2 = S. Therefore, we hypothesise

that an imprecise operator will improve the performance and we propose using the threshold

operator as given in Equation (2.2) to vary the imprecision and to reduce the discontinuity

effect of the operator.

2.4.2 Results of the Imprecise Operator

In this section we investigate the effect on performance of systematically varying the imprecision

of the fusion operator under different learning scenarios. More specifically, we consider the

threshold fusion operator in Equation (2.2) for a range of different values of γ between 0 and 1.

By a series of simulation experiments we show that in high error rate and low evidence rate
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Figure 2.8: Average belief cardinality of the population against time steps for ρ = 0.01, σ =
0.2, ϵ = 0.3, and n = 5. It is noted that increasing the fusion threshold reduces the speed of
reaching consensus.

scenarios performance is optimal for an intermediate level of fusion imprecision, especially when

performance is measured in terms of an Fβ score which gives significantly higher importance to

not being incorrect than to being correct. For this we will use the F3 score. In the following

results we will consider the fusion operators ⊙γ for γ ∈ { j
i |i ∈ [1, 2n], j ∈ [0, i], i, j ∈ Z}.

Figure 2.8 shows the average cardinality of beliefs in the population decreasing over time

for different thresholds. Recall that for epistemic sets, i.e. belief represented by sets of states,

cardinality provides a measure of imprecision. Hence, we see a general trend by which the

precision of the agents’ beliefs increases during social learning. The red line (γ = 0.302) declines

slower than the orange line (γ = 0) which is equivalent to the intersection-union operator and

they both reach a cardinality of 1 after 5000 iterations. However, the purple line (γ = 0.451)

decreases even more slowly to an average cardinality of around 5 after 5000 iterations. Hence,

decreasing the precision of the fusion operator has the effect of slowing convergence and also

tends to result in agents holding more imprecise beliefs over time.

As can be seen from Figure 2.8, the agents’ beliefs may not always be precise after 5000

iterations with imprecise fusion, i.e. the cardinality of the belief set may be greater than one,

i.e., |B| > 1. Therefore, in order to thoroughly evaluate the performance of different levels of

imprecise fusion, we use multiple metrics. In addition to the Hamming distance, we also assess

performance by measuring the proportion of correct propositions in each belief and by utilising

an F-measure which give different importance of correctly identifying propositions and the not
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(a) Optimal thresholds γα for α.
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(b) Optimal thresholds γF3 for F3.

Figure 2.9: Optimal thresholds for ρ ∈ [0.005, 1] and fusion rate σ ∈ [0.04, 1.0] where ϵ = 0.3.
We see that imprecise fusion is optimal when the evidence rate is relatively low compared to
the fusion rate.
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incorrectly identifying propositions.

More specifically, for an epistemic set B we define the following:

C(B) = {pi : s(pi) = s∗(pi) for all s ∈ B}(2.10)

I(B) = {pi : s(pi) = 1 − s∗(pi) for all s ∈ B}(2.11)

If agent ai ∈ A has belief Bi then let,

α =
1

n

1

k

∑
ai∈A

|C(B)| and θ = 1 − 1

n

1

k

∑
ai∈A

|I(B)|(2.12)

C(B) is the number of propositions about which belief B is both certain and correct, while

I(B) is the number of propositions about which B is both certain and incorrect. Hence, α is

the average proportion of propositions about which agents are both certain and correct, while

θ is the average proportion of propositions about which agents are either correct or uncertain,

i.e., not incorrect. From this we can then define the Fβ score according to:

(2.13) Fβ = (1 + β2)
α · θ

β2 · α + θ
.

Here β is a parameter that allows us to give different degrees of importance to α and θ such

that Fβ attributes β times as much importance to not being incorrect as to being correct.

Let γF3 denote the value of γ at which F3 is maximal at t = 5000, and let γα denote the

value of γ at which α is maximal at t = 5000. Figure 2.9 shows two heat maps of performance,

i.e. values of α and F3 respectively, with ϵ = 0.3 plotted against fusion rate σ and evidence

rate ρ. For low evidence rate and relatively high fusion rate we have that γα > 0 and γF3 > 0.

This is consistent with the hypothesis that more imprecise operators are optimal when ρ is

significantly less than σ, i.e. when ρ
σ is low.

Figure 2.10 shows both the average correct proportion α and the F3 score at t = 5000

plotted against different values of γ for evidence rate ρ = 0.01 and fusion rate σ = 0.2. Both

measures are maximal for an intermediate value of γ, and this is particularly pronounced for

the F3 score. Figure 2.10 also shows the average proportion of determined propositions as

corresponding to those propositions about which an agent is certain (orange line). This is given

by α + 1 − θ. Notice that this decreases as γ increases thus resulting in more imprecise fusion

and α = F3 when agents are certain on all the propositions, i.e., α = θ. However, at the values

of γ for which α or F3 are maximal, around γ = 0.3 and γ = 0.4 respectively, the number of

determined propositions remains high (more than 0.95 and 0.75 respectively), suggesting that

the population is still learning the true state with a high degree of precision.

Figures 2.11 to 2.13 shows γF3 (purple lines), and γα (red lines) for varying fusion σ, evidence

ρ, and error rates ϵ. Figure 2.11 plots γF3 and γα against fusion rate σ for ρ = 0.01 and ϵ = 0.3,

and shows that in this case both metrics increase with σ for σ < 0.4. γF3 stops changing and
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Figure 2.10: Average score (F3) or proportion (α, α + 1 − θ) for a population of k = 50 agents,
language size n = 5, fusion rate σ = 0.2, evidence rate ρ = 0.01, and error rate ϵ = 0.3. Both
metrics peak at a mid-range value of γ, with the effect being especially marked for the F3 score.

γα decreases slightly with σ for σ > 0.4. Figure 2.11 suggests that as the fusion rate increases

relative to the evidence rate then optimal performance requires an increasingly imprecise fusion

operator. In other words, if fusion is frequent relative to evidence acquisition then it is better if

the result of the fusion is imprecise, whereas if fusion is rare relative to evidence acquisition

then it is better if the result of the fusion is precise. Figure 2.12 illustrates this relationship

between σ and ρ from a different perspective by plotting γF3 and γα against evidence rate ρ.

Again we see that as the evidence rate increases relative to the fusion rate, optional performance

is obtained using increasingly precise fusion operators. This trend suggests that the efficacy

of the imprecise fusion operator is not just an isolated property but rather depends on the

specific conditions under which it is deployed. In scenarios where agents frequently update their

beliefs with new evidence, a more precise fusion operator seems enough to superior performance.

This may be attributed to the higher confidence we can place in each piece of evidence as they

become more abundant, thereby allowing the system to more safely narrow down the belief

sets without risking the exclusion of the true state of the world.

Figure 2.13 shows optimal threshold values for fixed σ and ρ plotted against the error rate

ϵ. This suggests a subtle relationship between fusion imprecision and evidential inaccuracy. For

example, as the error rate increases the optimal imprecision value γF3 increases. In other words,

as evidential inaccuracy increases then more imprecise fusion operators are required in order

to optimise the F3 score. On the other hand, optimising the proportion of correctly classified

propositions α requires more precise operators in high error rate scenarios, although these are
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Figure 2.11: Optimal thresholds γ according to F3 (γF3) and α (γα) against fusion rate σ for
evidence rate ρ = 0.01 and error rate ϵ = 0.3. For σ < 0.4, an increase in σ leads to an increase
in the optimal fusion thresholds. For σ > 0.4, γF3 stabilises while γα marginally declines with
increasing σ.
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Figure 2.12: Optimal thresholds γ according to F3 (γF3) and α (γα) against evidence rate ρ for
fusion rate σ = 0.2 and error rate ϵ = 0.3. Optimal performance with higher ρ requires more
precise fusion operators.

still more imprecise than the intersection-union operator. These results are likely to be due to a

trade-off between error and uncertainty. For very imprecise fusion operators agents will tend to

hold beliefs with higher cardinality (see Figure 2.8) and therefore have a higher proportion of

uncertain propositions. Ideally, these uncertain propositions should be those for which a given

agent has received conflicting information and would therefore have had a higher chance of

incorrectly classifying them if they held more precise beliefs. The F3 score takes into account

this potential trade-off between accuracy and uncertainty, while on the other hand, α will tend

to decrease as γ increases since the proportion of correctly classified propositions is bounded by
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Figure 2.13: Optimal thresholds γ according to F3 (γF3) and α (γα) against error rate ϵ for
fusion rate σ = 0.2 and evidence rate ρ = 0.01. Both thresholds are less sensitive to various
error rates; γF3 slightly increases and γα slightly decreases with the ϵ increases.

the proportion of propositions which are determined, i.e., which are classified as being true or

false rather than uncertain (see Figure 2.10).

2.5 Conclusion

In this chapter we have investigated social learning of the state of the world in a propositional

model. Agents’ beliefs have been represented by epistemic sets corresponding to the set of states

that each agent believes are possibly the true state. Agents learn from two distinct sources:

directly from the environment using belief updating, and from other agents by applying a fusion

operator to combine their beliefs with those of other agents.

Our analysis demonstrated that the well-known intersection-union(Dubois&Prade) fusion

operator results in effective social learning across a range of scenarios in which there is

inaccurate and relatively limited direct evidence. However, performance is affected by the

relative relationship between the evidence rate ρ and the fusion rate σ. More specifically, our

results suggest that for a given value of ρ there is a bounded interval of values of σ for which

performance is good.

We then extended our investigation to the role of imprecision in belief fusion. A novel

parameterised fusion operator was introduced, which can generate beliefs of different levels

of precision or imprecision. Our results then show that if σ is high relative to ρ then optimal

results are obtained by a more imprecise operator, comparing to the state-of-the-art standard

Dubois&Prade operator. In general, the optimal level of imprecision is strongly dependent on

the frequency of evidence relative to the frequency of fusion, so that the higher the frequency

of fusion is compared to the frequency of evidence the more imprecise the operator should be,

and much less clearly dependent of the level of evidential inaccuracy.
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2.5. CONCLUSION

One of the limitations of this work is that it does not account for the noise that can occur

during the fusion process. In real-world scenarios, communication channels are often imperfect,

and the information exchanged between agents may be subject to distortion, interruptions, or

other forms of interference. These conditions can significantly impact the reliability of belief

fusion and, consequently, the learning accuracy of the system. Future research could explore

the integration of models considering the possible failure of communication, e.g., introducing a

failure rate for fusion, to enhance the robustness and applicability of the proposed algorithms

in more realistic settings. In addition, the communication topology is assumed to be a fully

connected network. However, in real-world scenarios, communication topology is often limited,

and recent studies have shown that less connected networks may achieve better accuracy,

although this comes with the trade-off of increased learning time[38].

Following this work, we intend to investigate other imprecise fusion operators based on

alternative measures of similarity or distance, e.g., a threshold operator based on the Hamming

distance. Another direction of future work may focus on empirically validating these results in

real-world scenarios and extending the model to accommodate more complex types of evidence

and agent interactions.

Additionally, having shown that preserving imprecision during belief fusion leads to greater

performance in the context of collective learning, we seek to explore whether imprecise forms of

evidential updating may lead to similar improvements in the learning process. Finally, simulated

robot experiments will enable us to investigate a more grounded collective learning scenario in

which to better understand the implications of our model when external constraints such as

communication bandwidth and inaccuracy from on-board sensors are imposed by the robot

hardware.
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Chapter 3

Imprecise Evidence in Social

Learning1

In the Chapter 2, we proposed a social learning model characterised by set-based agent beliefs.

We introduced a Jaccard similarity-based operator for imprecise belief fusion, which yields

belief combinations with varying levels of imprecision. This approach enables the agents’ beliefs

to be fused into a more conservative result when their intersection is relatively precise. Our

simulation results have demonstrated that the social learning model can benefit from low to

intermediate levels of imprecision in terms of the accuracy of the learning outcomes when the

evidence rate ρ is low. In addition, the evidence acquired by agents may also be imprecise, as

real-world information is often subject to various sources of uncertainty and noise in practical

applications. Such imprecision may arise due to factors such as limited sensor capabilities,

constrained communication bandwidth, or the inherent complexity of the underlying phenomena

being observed. Consequently, it is crucial to explore the robustness of our social learning model

in the context of imprecise evidence. In this chapter we separate imprecision from inaccuracy

in noisy real-world evidence and investigate the impact of imprecise evidence on social learning.

In particular, we propose social learning models in which evidence collected by agents are

represented by a set of possible states, and therefore the evidence collected can vary in its

level of imprecision. We investigate this model using agent-based an robot simulations and

demonstrate that it is robust to imprecise evidence. Furthermore, we propose a method that

intentionally incorporates imprecision into the evidential updating. Our results also show that

this type of imprecise evidence can enhance the efficacy of the learning process in the presence

of sensor errors.

Imprecise evidence in social learning can arise from multiple sources. The inherent vari-

ability in how individuals perceive, process, and transmit information; the complexities of the

environment in which learning takes place; and the intricacies of the social network structure all

1This chapter has been submitted to Swarm Intelligence and can be accessed via Research Square: https:
//doi.org/10.21203/rs.3.rs-2620622/v1; It may appear on the Turnitin report.
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contribute to the landscape of imprecision of evidence. In this chapter we not only investigate

the robustness of the model but also propose a novel method for evidential updating, which

uses purposefully designed imprecise evidence as a tool, enabling multi-agent systems to cope

with and possibly counterbalance the challenges posed by evidential inaccuracy. Through this

research, we aim to better understand the role of evidential imprecision in social learning and

exploring ways to utilising it. In this chapter, we extend the social learning model discussed

in Chapter 2 to explore its robustness under varying degrees of evidential imprecision. Using

both agent-based and multi-robot simulation experiments, we demonstrate the model’s robust-

ness to imprecise evidence and its effectiveness in location classification tasks, even when the

evidence is inherently imprecise. To further investigate the role of imprecision, we introduce

a Hamming-distance-based strategy to convert precise evidence into imprecise forms, thereby

allowing us to control the desired level of imprecision. Our findings suggest that systems utilising

imprecise evidence can achieve higher levels of robustness and accuracy under certain conditions,

depending on their tolerance for error.

An outline of the remainder of the chapter is as follows: In Section 3.2 we outlines the

set-based model for social learning and discusses belief fusion and evidential updating. In

Section 3.3, we describe a series of simulations experiments that investigate the robustness of

social learning to imprecise evidence with different degrees of imprecision. As well as agent-based

simulations this also includes multi-robot simulation experiments of a location classification

task. Then in Section 3.4 we introduce imprecise evidence in the form of a Hamming distance

neighbourhood of an estimated state of the world, where the latter obtain as direct evidence

from the environment. In Section 3.5 we then show that agent’s building in imprecision of this

kind into the evidence updating can result in improved social learning performance. Finally, we

give some conclusions and outline possible future directions in Section 3.6.

3.1 Related Work

In a general multi-agent context, evidence could take the form of data received directly relating

to a particular instance or set of instances. In more specific robotic applications evidence might

take the form of signals received by various sensor modalities, such as cameras, microphones,

and ultra-sound sensors. For problems of this type it has been argued that approaches combining

individual evidence collection and local fusion of beliefs between individuals are more robust

to noise and more efficient than those that rely on evidence collection only, since the fusion

step allows for evidence propagation and error correction across the whole system [12, 21, 28].

The interaction between evidential updating and belief fusion has been studied based on the

well known bounded confidence model [27], which suggests that the whole society will end up

with a consensus on the truth with appropriate confidence level and evidence rate(so called the

strength of the attraction of the truth).
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The use of robots has become increasingly prevalent in various fields. Multi-robot systems are

a specific type of multi-agent system that uses robots as agents. Such systems are usually used

for the purposes of surveillance [74], formation [75], exploration, search and rescue tasks [76],

and best-of-n problems [48]. A social learning model with agents’ belief being modelled as

a number ∈ [0, 1] has been applied in a best-of-n problem [12] by E-pucks. The location

classification task explored in this chapter can be considered a variant of the best-of-n problem.

The best-of-n problem focusing on identifying the best option of n alternatives while our task

focus on classifying every location either being labelled as red or green by identifying the correct

allocation of colours out of 2n possible ones.

There is a significant body of literature discussing the impact of evidence inaccuracy in

practical environments, typically focused on the topic of the speed-accuracy trade-off in collective

decision-making tasks [48, 77]. The robustness to evidential inaccuracy of several belief fusion

operators applied to the best-of-n problem has been compared by [26]. In particular, best

performance in noisy conditions was achieved by Yager’s operator [70] and by Dubois & Prade’s

operator [68]. In this chapter, with the set-based belief representation framework, we will focus

on the impact of evidential imprecision rather than inaccuracy. Imprecise evidence has been

shown to be advantageous in the social learning processes of certain insect species. For example,

studies on bees [59] and ants [31] have suggested that the utilisation of imprecise evidence can

improve collective decision-making and problem-solving abilities. These findings suggest that

there may be underlying adaptive advantages to employing imprecise evidence in social learning

contexts, offering potential insights for the design of multi-agent systems.

3.2 Model

In this chapter, agent beliefs are also represented by a set of possible states B ⊆ S as described in

Section 2.2. A group of agents socially seeks to learn their environment, which can be described

by a series of propositions P = {p1, ..., pn}. Each environmental state is s : P → {0, 1}n.

Agents hold beliefs about the possible states of the environment, represented as subsets of all

possible states. A belief containing multiple states indicates ambiguity, while a single-state

belief signifies conviction. For example, in a multi-location search and rescue context, a belief

set B = {⟨1, 0, 0, 0, 0⟩, ⟨0, 1, 0, 0, 0⟩} would indicate the agent’s uncertainty about casualties

being in either the first or second location. Agents’ beliefs will be fused by the same pairwise

fusion operator described by Equation (2.3), we recall it as follows:

B1 ⊙B2 =

{
B1 ∩B2 : B1 ∩B2 ̸= ∅

B1 ∪B2 : B1 ∩B2 = ∅

In addition to fusing with other agents, agents receive direct information from the envi-

ronment as evidence. For evidential updating, in this chapter we assume that the evidence
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takes the form of a set of assertions about the true state of the world s∗. Suppose, for example,

agents receive a set of states that can possibly be the true state.

Since evidence corresponds to a set of states, we can then naturally measure its imprecision

by its cardinality |E|, i.e. the greater |E| the more imprecise the evidence is. We then extend

the language size of this problem from n = 5 in Chapter 2 to n = 8 to obtain more possibilities

of potential evidential imprecision, i.e. from |E| ∈ {1, . . . , 32} to |E| ∈ {1, . . . , 255}.

Given the form of E we then propose that an agent updates its belief B to B|E by applying

the operator defined by Equation (2.6), we recall it as follows:

B|E =

B ∩ E : B ∩ E ̸= ∅

B : otherwise.

This method of evidence updating in which certain states are ruled out as part of the learning

process has already been applied effectively in social learning for best-of-n problems [19].

In this chapter, we evaluate performance on this learning task at the population level using

the average Hamming distance H from the population of agents A belief values to the true

state s∗ defined by Equation (2.9), re-scaled as an accuracy α measure such that,

α = 1 −H(A, s∗)(3.1)

In order to investigate the impact of imprecision on social learning we will focus on the state-

of-the-world problem in which agents attempt to learn the truth values of a set of propositions.

In Section 3.3.1 we then investigate how tolerant of this form of social learning is to the presence

of imprecise evidence. In Section 3.3.2, we instantiate this problem using a robot simulator to

investigate the potential of applying this model in robotic applications and its robustness to

imprecise evidence in practice.

3.3 Learning with imprecise evidence

In this section, we introduce two simulation scenarios where imprecise evidence is naturally

encountered by the agents/robots. In Section 3.3.1, the agents receive accurate but imprecise

evidence. In other words, the cardinality of the evidence set will vary while it will always include

the true state of the world. We use simulations experiments to investigate how robust the

social learning model is to imprecise evidence before introducing a robotic classification task

Section 3.3.2 where the imprecision of evidence is dependent on the number of locations visited

by robots in a single evidence collection episode.

3.3.1 Agent-based simulation with imprecise evidence

This section describes simulations of a multi-agent system with k = 100 agents attempting to

socially learn the truth values of n = 8 propositions. The choice of n = 8 propositions provides
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a broad range of levels of imprecision (|E| ∈ {1, 2, 3, . . . , 256}) while maintains acceptable

computational costs. The agents are initialised without any priory knowledge, In order to

investigate the model’s robustness to imprecise evidence, the degree of evidence imprecision

received, as measured by |E|, is varied. For example, we might think of this as occurring when

agents gradually learn facts about the world from different sources and expressed as logical

formulas with different levels of generality. In this section, we only consider an error-free scenario

such that the evidence obtained by the agents will be guaranteed to include the true state of

the world s∗, while each of the other states has equal probability of being sampled without

replacement. The number of states that are not s∗ included in the evidence set will depend on

a model parameter controlling the level of imprecision. In examining the relationship between

the cardinality of evidence (|E|) and its precision, the principles of Shannon entropy offer a

compelling framework for analysis. Shannon’s concept, central to information theory, provides

a quantitative measure of the uncertainty or unpredictability inherent in an information source.

In this context, each piece of evidence is considered as an individual message that contributes

to the overall information about a hypothesis, i.e. possible states of the world in this context.

High entropy, characterised by a large set of evidence, suggests increased imprecision in the

information conveyed. Conversely, a small set of evidence might exhibit low entropy, indicating

greater precision and reduced uncertainty. In this thesis, we apply the cardinality of evidence

to represent the imprecision of the evidence for its simplicity.

As previously described in Section 2.3, in practice, both evidence and agent interactions may

be sparse or limited. We model this probabilistically as follows: Each agent conducts evidential

updating and belief fusion iteratively. During each iteration, every agent has probability ρ (the

evidence rate) of successfully obtaining evidence from the environment, and the agent will stop

collecting evidence if it is certain about every proposition, i.e. it has a singleton belief. Agents

also learn from the evidence being gathered by their peers using belief fusion. Every agent

in the population has probability σ (the fusion rate) of being placed in a pool to fuse their

belief with the belief of another agent. Each agent within the pool will be randomly paired

with another agent and then each pair will combine their beliefs using the fusion operator in

Equation (2.3). For every pair, both agents will adopt the result of this fusion as their new

belief. If the number of agents in the pool is odd, then one agent will not take part in fusion.

The evidence received by the agents will be modelled as follows: The degree of the imprecision

of evidence is pre-defined and varied to investigate the robustness of the set-based social learning

model to different degrees of evidential imprecision. The evidential imprecision is constant

across all iterations and across the population. In this section, we present error-free simulation

results of which the true state of the world is guaranteed to be included in the evidence sets

and the rest of the states will be randomly selected until the pre-defined evidential imprecision

|E| is satisfied.

In Figure 3.1 we show the average accuracy α of the agents’ beliefs against time t for

47



CHAPTER 3. IMPRECISE EVIDENCE IN SOCIAL LEARNING

different values of evidential imprecision |E| and different combinations of evidence rate, ρ, and

fusion rate, σ. For each combination of parameters we ran the experiments 50 times and the

results are averaged over those 50 runs. We see that the population converges to α = 1 at steady

state for every combination of ρ, σ, and |E|. Since the only belief for which α = 1 is B = {s∗}
it follows that the population has reached consensus by correctly and precisely identifying the

true state of the world. Furthermore, this suggests that this social learning model is robust

to various levels of evidential imprecision, provided that the agents always receive accurate

evidence, i.e. s∗ ∈ E.

In Figure 3.1a we see that the population converges more slowly as evidence imprecision

increases, such as when evidence is sparse (ρ = 0.1) and fusion is infrequent (σ = 0.1). For

|E| = 1, the population converges quickly to consensus by around t = 25. Convergence time

increases to around 80 time steps when |E| = 255, this corresponding to the most imprecise

non-vacuous evidence for n = 8 propositions since only one state of the world is emitted.

In a scenario where evidential updating is frequent while fusion is infrequent, as shown in

Figure 3.1b, the population converges faster for all levels of evidence imprecision than when

evidential updating is infrequent; within 10 time steps for |E| = 1 and within 25 iterations

for |E| = 255. When evidence is sparse and fusion is more frequent, Figure 3.1c shows that

population also reaches consensus faster than those shown in Figure 3.1a whereas all levels

of imprecision converges after around the same number of time steps. In Figure 3.1d, both

evidential updating and fusion are frequent, resulting in fast convergence to the belief indicating

the true state of the world, with little difference between the different levels of evidential

imprecision. The effect of evidence imprecision on the convergence time decreases as we increase

ρ or σ, as seen in Figures 3.1b to 3.1d. Furthermore, from Figure 3.1b and Figure 3.1c we see

that both more frequent evidence and more frequent fusion can reduce the differences in the

learning speed of the population. Furthermore, the frequency of belief fusion has the greater

effect. Comparing Figure 3.1b and Figure 3.1c, we see that the convergence speeds are less

affected by the level of evidential imprecision when agents learns more socially (ρ = 0.1, σ = 0.9)

than when they learn more independently (ρ = 0.9, σ = 0.1).

So far, the evidence received by agents in this section has been error-free. However, in

real-world situations it is highly likely that the evidence received could be subject to error;

often due to noisy sensing equipment or even environmental noise. In the following section we

will investigate social learning in a multi-robot scenario in which both evidential inaccuracy

and imprecision are present.

3.3.2 Location classification task by multi-robot system

In real-world scenarios, such as a swarm of drones collaboratively mapping an uncharted terrain,

a potential source of imprecision is when agents receive only partial information about the state

of the world during the evidence collection process. In this section we consider a particular form
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(a) ρ = 0.1, σ = 0.1

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

1 
9 
37 
93 
163 
219 
247 
255 

(b) ρ = 0.9, σ = 0.1
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(c) ρ = 0.1, σ = 0.9.
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(d) ρ = 0.9, σ = 0.9.

Figure 3.1: Average accuracy at steady state against time t for evidence rate ρ ∈ {0.1, 0.9},
fusion rate σ ∈ {0.1, 0.9}, and evidential imprecision |E| = 1, . . . , 255. The model maintains
high learning accuracy across different levels of evidential imprecision for various evidence and
fusion rates.

of imprecise evidence arising from partial knowledge in a multi-robot systems in which robots

are investigating properties of a number of different locations. During an evidence collection

episode individual robots are only able to visit a limited number of locations and, hence, obtain

only partial information about the full state of the world. In this context our results show

that for a simple robot arena environment, social learning is robust to a range of different

evidence collection bounds while being more effective than an approach based on individual,

evidence-based learning alone.

We now describe a series of experiments in which k = 5 or 10 e-puck robots investigate

n = 4, 8 or 12 locations arranged in a circle, each coloured either red or green. This is a similar

configuration to that used by [12] .We conduct simulation experiments for a multi-robot system

needing to make a collective decision about the true state of the world by attempting to classify

n locations as either being red or green. Specifically, the proposition pi asserts that location li

is red and ¬pi asserts that li is green. In this case a state si is the Boolean allocation of the two

colours to each location and beliefs are the set of the allocations deemed possible. Evidence

is collected using the e-puck’s in-built camera and with an additional error imposed on the

classification process. To model this we introduce an error rate ϵ corresponding to the probability
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of receiving evidence that is inconsistent with the true state of the world. More specifically,

let the true state be denoted by s∗, then in the case that an agent receives information about

location li they will receive s(li) = s∗(li) with probability 1 − ϵ, and s(li) = 1 − s∗(li) with

probability ϵ. Between evidence collection episodes individuals move to the centre of the circle

for fusion. The goal is for the whole system to reach consensus by identifying the true state of

the world, i.e., the correct colour of each location from the 2n = 16, 256, or 4096 possibilities

for n = 4, 8 or 12, respectively.

We simulate e-puck robots [78] which are well-suited to a classification task of this kind since

they are equipped with a range of sensors. Experiments were performed in the CoppeliaSim2

simulation environment which models the physical characteristics of the e-pucks, including

motion, communication and sensing. Figure 3.2 shows the experimental arena which has n = 8

locations equally distributed around a 1.12 m circle with the k = 5 e-pucks’ fusing positions

spaced evenly around a 0.3 m disc at the centre. Each e-puck returns to their fusing positions

after an evidence collection episode to fuse their beliefs with another robot also at their positions

at that time. The robots will only be able to communicate when they are at the fusing positions,

i.e., around the central area of the arena, with this restriction providing a basic model of a

scenario in which communication is limited.

A group of e-pucks are initialised without any prior knowledge and hence with initial beliefs

corresponding to the set of all possible states, representing total ignorance. They are given the

coordinates of all locations and relevant fusing positions and apply simple path planning to

travel between sites and the fusing positions. The e-pucks featured have 8 IR proximity sensors

and therefore we apply Braitenberg-based collision avoidance algorithms [79]. The system learns

the environment iteratively with individuals alternating between episodes of evidence collection

and fusion. During an evidence collection episode a robot visits some of the sites about which

they are currently uncertain, where the number of locations visited is less than a pre-specified

upper bound Nu.

This parameter Nu is defined as the maximum number of locations that a robot is able

to visit during each evidence collection episode, this modelling plausible real-life constraints

imposed by both robot hardware, and the scale and complexity of the environment, on distance

that can be travel during evidence collection. A natural consequence of this bound is that

evidence collected during each episode will typically only provide partial information in the

form of noisy data concerning the class of only some of the locations. The representation of

this partial information will take the form of imprecise evidence. We can then determine the

impact that imprecise evidence has on the population by varying Nu. Robots will obtain precise

evidence if they visited a relatively high numbers of locations since the evidence E they received

would then identify a small number of possible states, i.e., have low cardinality. More specifically,

the relationship between the number of sites visited v and the cardinality of the evidence set is

2https://www.coppeliarobotics.com/
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Figure 3.2: Top-down view of the experimental setup for n = 8 sites. The red/green squares
indicate the location of the sites, and the white circles show the fusion positions. An e-puck
resides at each fusion position.

given by |E| = 2n−v. Each robot selects up to Nu locations from the set of locations for which

either class is still possible according to their current belief B. At each location an e-puck uses

its camera to capture a colour value indicating the class to which that particular site belongs.

After visiting all the locations that they have selected, they update their belief according to

Equation (2.6) and return to their pre-specified central location. Each robot then broadcasts

its belief along with a flag message identifying the broadcaster as being ready to fuse. In our

model we simulate the communication between e-pucks using the built-in CoppeliaSim functions

while physical e-pucks can achieve the same communication via on-board Wi-Fi or Bluetooth
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E FI

Figure 3.3: The robot’s state transition model. (I) When the robot visits all of the locations it
has planned to visit. Evidential updating (E), and Belief fusion (F ).

functionality. They also listen for any other robots currently broadcasting and fuse their belief

with the transmitted belief in the first such message they receive.

Figure 3.3 shows a state transition diagram for the above process. Robots have 3 internal

states: Investigation (I); Evidential updating (E); and Belief fusion (F ). Robots are initialised

in state I before they select locations to investigate and visit them in order, collecting class

information as they go. Once all selected locations have been visited the robot transitions to

state E and updates their belief based on the evidence collected. They then transition to the

state F , return to their fusing positions and perform fusion. If their belief now identifies a

single complete set of classifications for all the locations they remain in their fusing positions in

state F and carry out another fusion, otherwise they transition to state I for another evidence

collection episode.

We use the accuracy metric defined in Equation (3.1) to measure the performance of the

whole population of robots. Notice that for evidence-only learning, when the belief fusion

process is disabled and robots learn independently based only on the evidence they receive, the

simulations lead to Bernoulli experiments with the success probability p = 1 − ϵ. The expected

value of the Hamming distance between a robot’s belief and the true state is then as follows:

E(H(B, s∗)) =
1

n

n∑
i=0

(
n

i

)
i(1 − ϵ)(n−i)ϵi = ϵ(3.2)

We therefore employ 1 − ϵ as a benchmark to illustrate the improvement in performance

which results from robots interacting with one another and fusing their beliefs to achieve social

learning.

We now present results from simulation experiments conducted with k = 5 or 10 e-pucks,

n = 4, 8, or 12 sites and different upper bounds Nu on the number of sites visited during an

evidence collection episode. For each combination of parameters we ran the experiments 20 times.

The results presented herein are then averaged across runs with error bands corresponding to

the 5th and 95th percentiles.
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(a) k = 10, n = 12, ϵ = 0.2
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(b) k = 5, n = 8, ϵ = 0
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(c) k = 5, n = 8, ϵ = 0.2.
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(d) k = 10, n = 8, ϵ = 0.2.
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(e) k = 5, n = 8, ϵ = 0.3.
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(f) k = 5, n = 8, ϵ = 0.4.

Figure 3.4: Average log cardinality log2|B| and average accuracy α plotted against iteration
for Nu = 3 with different numbers of agents k, locations n and error rate ϵ. (a) Evidence-only
learning (without fusion). (b–f) Social learning (with fusion).

Figure 3.4 shows the log average cardinality log2|B| (blue line) and the average accuracy

α (purple line) of the robots’ beliefs against time t for n ∈ {8, 12} locations with an upper

bound Nu = 3. For all plots in Figure 3.4 the dotted orange lines indicate the value of 1 − ϵ; i.e.

the expected accuracy when agents learn individually from direct evidence alone. For instance,

in Figure 3.4a we present results from an evidence-only learning scenario where we see that,

for n = 12 locations, k = 10 e-pucks and error rate ϵ = 0.2, the cardinality of the population

decreases to 0 over time while the average accuracy of the system converges to the expected

accuracy of 1 − ϵ. This is because, without belief fusion, agents are dependent on the evidence
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that they receive directly, without any communication with other agents. This leads to agents

adopting erroneous beliefs about the state of the world. An accuracy value above the dotted

line is therefore indicative of the system’s ability to correct for errors as a direct result of social

learning.

From Figures 3.4b to 3.4f we see that, across all runs and for all parameter combinations,

the robots converge to a belief of cardinality |B| = 1, i.e., a singleton belief, as shown by the

blue lines decreasing to log2|B| = 0. This means that, under our model, all of the e-pucks

eventually remain stationary at their central fusing positions having reached a consensus about

the state of the world that they believe to be true. Of course, the primary purpose of location

classification is for the system to accurately identify the true state of the world. The purple

lines in Figures 3.4b to 3.4f show the average accuracy of the population plotted against time.

Broadly, we see that the system is able to correctly classify locations with high accuracy.

Starting with an error-free scenario in Figure 3.4b with 8 locations and an upper bound of

Nu = 3 as well as k = 5 e-pucks, the robots always identify the true state of the world s∗ with

accuracy α = 1 in under 100 seconds across all 20 experiments. This is perhaps unsurprising

when robots obtain perfect information during evidence collection. In Figures 3.4c and 3.4d we

show a moderately noisy scenario with ϵ = 0.2 and an upper bound Nu = 3. In Figure 3.4c we

see with noisy evidence the system is slower to reach a consensus but still manages to converge

on a belief with an average accuracy of 0.98 after roughly 400 seconds and in Figure 3.4d with

greater number of robots the system achieves higher accuracy of 1 with less variations after

roughly the same time as system with 5 robots. With higher error rates ϵ = 0.3 and ϵ = 0.4, the

robots converges with a lower accuracy α = 0.9 and α = 0.8 and more variation across multiple

runs, as shown in Figure 3.4e and Figure 3.4f. However, the systems are still manage to reach

consensus at a singleton belief in these scenarios of higher error rates

The upper bound on the number of locations Nu also has an impact on accuracy when

the population size k is small, with higher accuracy being achieved for intermediate values of

Nu. For example, Figure 3.5a shows the average accuracy against the upper bound Nu taking

values from [1, n], for k = 5 and n ∈ {4, 8, 12}, with moderate error rate ϵ = 0.2. In Figure 3.5a

the best performance is obtained when the visit bound Nu = 2, 3 where, at steady state, the

system achieves an accuracy α = 1 on average across 20 runs. That means the system reaches

consensus on s∗ across all 20 experiments. For Nu = 1 and Nu = 4, however, the accuracy falls

to around 0.87 and 0.95, respectively. More generally, good performance across all Nu values

shows that this form of social learning is still accurate under imprecise evidence. Although,

there is some reduction in performance for the most imprecise case when a maximum of only 1

location is visited in each evidence collection episode. The model is more robust to varying

imprecise evidence when there are k = 10 e-pucks, with similarly high accuracy observed for all

Nu and for all n ∈ {4, 8, 12} as shown in Figure 3.5b. Increasing the number of robots k can

improve the overall performance of social learning and decrease the variance in accuracy. The
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Figure 3.5: Average accuracy at steady state for various upper bounds Nu and error rate ϵ = 0.2.
(a) n ∈ {4, 8, 12} from left to right with k = 5. (b) n ∈ {4, 8, 12} from left to right with k = 10.

system achieves greater accuracy for all upper bounds with k = 10 robots than k = 5 robots.

The performance is also less variant across simulations and across different Nu.

It is also important to consider whether there are different costs associated with the different

levels of imprecision. In Figure 3.6 we show the average number of evidence collection episodes

required to reach a system-wide consensus against the upper bound Nu with error rate ϵ = 0.2.

We see that for systems of k = 5 and k = 10 e-pucks the average number of evidence collection

episodes performed by each e-puck are very similar for n = 4 and n = 8 locations and for n = 12

locations the robots performed more evidence collection episodes when k = 10 than when k = 5.

For example, for n = 12 and Nu = 4, with k = 10 e-pucks each robot performed 14 evidence

collection episodes on average whereas for k = 5 the average was only 11, meaning that having

more e-pucks does not reduce the number of evidence collection episodes performed by each

e-puck on average. Therefore, with double the number of e-pucks the system obtains roughly

twice as much information in the form of direct evidence and roughly twice the opportunities

for error correction via belief fusion.

As each evidence collection episode requires the robots to leave and reenter the central

fusing positions, we now consider the cost that Nu incurs in terms of the average distance
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Figure 3.6: Average number of evidence collection episodes performed by one e-puck prior to
reaching consensus for ϵ = 0.2, k ∈ {5, 10} with n ∈ {4, 8, 12} from left to right.
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Figure 3.7: Average distance travelled prior to consensus against upper bounds Nu for ϵ = 0.2,
k ∈ {5, 10} with n ∈ {4, 8, 12} from left to right.

travelled by the robots for n ∈ {4, 8, 12} and k ∈ {5, 10} as shown in Figure 3.7. We see that

the average distance travelled is robust to both population size n and the visit upper bound

Nu. As we increase Nu the robots must travel between sites before returning to their fusing

positions, covering increasing distances proportionate to Nu. However, the increased distance

travelled in a single evidence collection episode is offset by the reduction in the average number

of evidence collection episodes, as shown in Figure 3.6. The total evidence collection episodes

performed are trending down with increasing Nu. We therefore see relatively little change in

the average distance travelled across different values of Nu. Finally, in Figure 3.8 we show the

average convergence time for the system against Nu. This is the time it takes for the robots

to reach a consensus. For ϵ = 0.2 we see a relatively consistent convergence time for different

Nu, which demonstrates the robustness of the social learning model to noisy evidence and

insensitivity to the level of evidential precision. Although the time cost increase for higher

number of locations needed to be classified, in general, the time cost is insensitive to both the

population size and different constraints on the number of locations that can be visited in an

evidence collecting episode. In other words, the convergence time is insensitive to the different
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Figure 3.8: Average time to convergence against upper bound Nu for ϵ = 0.2, k ∈ {5, 10} with
n ∈ {4, 8, 12} from left to right.
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Figure 3.9: Average numbers of site visited per episodes against Nu for ϵ = 0.2, k ∈ {5, 10}
with n ∈ {4, 8, 12} from left to right

levels of evidential imprecision.

Due to the evidence gathering strategy applied, the e-pucks sometimes do not visit the

maximum number of sites that Nu allows them to visit. We therefore present the average

number of sites actually being visited per evidence collection episode for n ∈ {4, 8, 12} and

k ∈ {5, 10} with error rate ϵ = 0.2 in Figure 3.9. We see that for the highest visit bounds

Nu = 4, 8, 12, e-pucks only visit around 2.5, 5, and 8 locations, respectively, on average. The

robots visit locations adaptively according to their current belief, and this may explain the

system’s robustness to Nu as shown in Figure 3.5.

We then carried out experiments with a higher error rate ϵ = 0.3 for n = 8 locations and

k = 5 e-pucks to consider the model robustness to an even noisier environment. In Figure 3.10

we present the accuracy against the visit bound Nu for ϵ = 0.3. Here higher accuracy can also

be obtained by intermediate visit bounds where the multi-robot system achieves α > 0.9 on

average for Nu = 4 and Nu = 5. However, across the range of upper bounds Nu performance

always exceeds that of the expected accuracy, even in the high error rate scenario where ϵ = 0.3,

suggesting that this model is robust to error . In Figure 3.11, we see that the time to convergence

does increase for a higher ϵ = 0.3.
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Figure 3.10: Average accuracy at steady state for various upper bounds Nu and error rate
ϵ ∈ {0.2, 0.3}
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Figure 3.11: Average time to convergence for various upper bounds Nu and error rate ϵ ∈
{0.2, 0.3}
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Figure 3.12: Average accuracy(a) and Average time to convergence(b) at steady state for various
upper bounds Nu and error rate ϵ = 0.3

1 2 3 4 5 6 7 8
Visit bounds Nu

0

1

2

3

4

5

6

7

8

Av
er

ag
e

si
te

vi
si

te
d

Noise 
0.2
0.3

Figure 3.13: Average numbers of site visited per episodes against upper bounds Nu for ϵ ∈
{0.2, 0.3}, k = 5, and n = 8
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Figure 3.14: Average distance travelled prior to consensus against upper bounds Nu for ϵ ∈
{0.2, 0.3}, k = 5, and n = 8

In Figure 3.12 we show the average number of evidence collection episodes required to reach

a consensus in the system against the upper-bound limit Nu and for error rate ϵ ∈ {0.2, 0.3}.

We see that the swarm conduct more evidence collection episodes for ϵ = 0.3 than for ϵ = 0.2.

Specifically, when Nu is, the required number of episodes is considerably higher for ϵ = 0.3

than for ϵ = 0.2. For greater Nu bounds, the increase becomes modest. This suggests that the

robots demand more evidence collection episodes for consensus for higher error rate.

In addition to the average number of evidential collection episodes, we now consider the

cost that Nu incurs in terms of the average distance travelled by the robots for different error

rate ϵ = 0.2 and ϵ = 0.3 as shown in Figure 3.14, as well as the average number of sites visited

in each evidence collection episodes for different Nu as shown in Figure 3.13. Between the two

examined error rates, Figures 3.13 and 3.14 indicates that the average distance travelled and

number of sites visited by the robots is not sensitive to changes in the error rate ϵ. While higher

error rates necessitate more evidence collection episodes, the results suggests that this increase

does not drastically inflate the overall distance covered by the robots during their task. The

system effectively balances the need for additional evidence collection against the operational

constraints of travel distance. This robustness demonstrates that the cost implications of noise

are manageable, thereby highlighting the scalability and reliability of our social learning model

in varying environments and operational conditions.

Overall, the results of the robot simulation experiments show that this form of multi-robot

social learning achieves high accuracy across all different imprecision levels. The cost of the
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classification task is robust to both error rate and different constraints on the number of

locations that can be visited in an evidence collecting episode. The approach therefore has

the potential to be effectively applied to location classification tasks conducted by multi-robot

systems. In this approach, each robot does not have to investigate every location for the system

to reach consensus. There can be good performance in scenarios in which access to some

locations is restricted, either by the range of the robots (e.g., due to power constraints) or

a heterogeneous system possessing different levels of access or capabilities. Furthermore, the

approach scales well scenarios in which the number of locations is greater than the number

of robots. This scalability is crucial because it enables efficient resource allocation, allowing

a smaller robotic team to effectively monitor or operate in a large and complex environment

without compromising performance.

the simulation can be easily transferred to a real world implementation, using a similar

set-up as applied in [12].

In this section, we have demonstrated that social learning is capable of delivering robust

performance, even when robots are dealing with imprecise and noisy evidence. Remarkably,

the level of imprecision can be significantly high, and the system’s performance still remains

accurate. In other words, social learning can be robust to evidence that is both imprecise and

noisy. Subsequently, we show that social learning performance can actually be improved by

incorporating imprecise evidence of a particular type and degree in Section 3.4.

3.4 The benefits of imprecise evidence in social learning

In this section, we detail a method employing the Hamming distance to infuse imprecision into

the evidence collected by agents. In Section 3.4.1, this approach is formulated with the intent of

harnessing deliberately infused imprecision into the evidence, particularly when agents acquire

precise evidence. We hen carry out agent-based simulations in Section 3.4.2 and demonstrate

that certain degrees of evidential imprecision can mitigate the adverse effects caused by the

inaccuracy of the evidence in the social learning process.

3.4.1 Model for Imprecise Evidence and the Neighbourhood Approach

In this section, we introduce a method to use evidence imprecision as a design parameter for

social learning and conduct agent-based simulations. Here we assume the information receive by

the agent is precise, identifying a single state se which may or may not deviate from the true

state of the world, depending on whether or not there is environmental inaccuracy i.e. ϵ > 0.

The estimate se is generated by independently sampling the truth value of each proposition

and then recording the correct truth value with probability 1− ϵ and incorrect truth value with

probability ϵ. Let He = H(s∗, se) denote the Hamming distance between the true state of the
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world and the state identified during evidence collection. In the case that the error rate ϵ > 0

then He is a random variable with the following probability distribution:

P (He(se, s
∗)|ϵ) =

(
n

i

)
ϵi(1 − ϵ)n−i(3.3)

Based on Equation (3.3), the maximum likelihood estimation of He is Ĥe = 0, Ĥe = 1, and

Ĥe = 2 for ϵ = 0.1, 0.2, and 0.3 respectively if n = 8. In other words, the probability that

s∗ = se, i.e. He = 0, can be relatively small compared to s∗ ̸= se (He > 0) if the values of n and

ϵ are high. Figure 3.15 shows the relationship between the observed state and the true state of

the world. s1e, s
2
e, and s3e are three states independently collected as evidence, assuming ϵ > 0.

All three states are different from the true state s∗ with the distance shown as concentric circles

centred on s∗. However, if we consider imprecise evidence in the form of a neighbourhood of

the evidence states, then as the radius of that neighbourhood increases so will the probability

that s∗ is contained in the evidence set (see the brown circle around s1e). We hypothesise that

this increase in probability of the evidence being consistent with the true state of the world can

be potentially beneficial in social learning.

In general, given an estimated state of the world se obtained from evidence, then an associated

imprecise evidence set E(se, H̃) can be defined as a Hamming distance neighbourhood of se

based on distance threshold H̃ in the following way:

E(se, H̃) = {s|s : H(s, se) ⩽ H̃},where H̃ ∈ {0, . . . , n− 1}(3.4)

We use H̃ as a representation parameter to control the imprecision of the evidence received

by the agents. An agent receives precise evidence se and uses it as an estimate of the state of

the world. This parameter essentially serves as a tuning knob, allowing for varying degrees

of evidential imprecision by varying its cardinality. The cardinality of the evidence increases

with H̃; for example, in the case that n = 8, the cardinality of the evidence is |E(se, H̃)|=∑H̃
i=0

(
n
i

)
, specifically, |E(s, 0)| = 1, |E(s, 1)| = 9, |E(s, 2)| = 37, |E(s, 3)| = 93, |E(s, 4)| = 163,

|E(s, 5)| = 219, |E(s, 6)| = 247, and |E(s, 7)| = 255.

3.4.2 Simulation Results of the Hamming Neighbourhood Approach

We now describe a number of agent-based simulation experiments to investigate the effect

of varying the threshold H̃ in social learning. Here we will assume a population of k = 100

agents will investigate the truth-values of n = 8 propositions. The evidential updating and

belief fusion methods defined in Equation (2.3) and Equation (2.6) are also applied in this

simulation with an evidence rate ρ ∈ [0.02, 1) and a fusion rate σ ∈ [0.02, 1). The population of

agents is initialised as having no prior knowledge about the world and hence hold completely
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Figure 3.15: Diagram showing the relationship between the observed state se and the true state
s∗

ignorant beliefs, i.e., B = S, at time t = 0. Experiments are run 50 times and the results are

averaged over those runs to account for variation in performance.

Figure 3.16 shows heat maps of average accuracy for varying fusion and evidence rates,

at different levels of evidential imprecision as parameterised by different Hamming distance

thresholds and different error rates. For each single heat map, with a step size of 0.02 we

have evidence rates ρ ∈ [0.02, 1) for the vertical axis and fusion rates σ ∈ [0.02, 1) for the

horizontal axis. The top-left plot in Figure 3.16 includes axis labels for clarity. The Hamming

distance threshold increases from left to right for Figures 3.16a to 3.16d. Here lighter and

darker colours indicate higher and lower accuracy, respectively. Across the heat maps, when

evidence is of low to intermediate imprecision, we see that the system is more accurate when

the evidence rate is relatively high in relation to the fusion rate. In other words, lower fusion

rates increase the system’s robustness across various evidence rates, error rates, and levels

of evidential imprecision. On the other hand, in areas where the evidence rate is relatively

low compared to the fusion rates, the system requires significantly low fusion rates to reach

higher accuracy. In regions of the parameter space in which the fusion rate is higher than
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Figure 3.16: Average accuracy α at steady state for different evidence imprecision for different
error rates ϵ ∈ {0.1, 0.2, 0.3, 0.4}. From left to right: H̃ ∈ {0, ..., 7}. In each heat map, the
y-axis and x-axis respectively represent ρ ∈ [0.02, 1) and σ ∈ [0.02, 1). The axis labels for the
heat maps are provided in the top left cell as an example. For higher error rates, an imprecise
evidential updating threshold can improve the overall accuracy across different combinations of
evidence and fusion rates.

the evidence rate, the learning accuracy is improved by increasing the Hamming threshold H̃

to different levels, depending on different error rates. Beyond the certain points, e.g. H̃ = 3

for ϵ = 0.3, additional increases in the Hamming threshold tend to reduce overall accuracy

while making it more consistent across various regions of the parameter space. As the level of

evidential imprecision increases, the performance across the parameter space becomes more

uniform, displaying a moderate level of accuracy. There is a unique case in Figure 3.16a when

H̃ = 7, where the accuracy is uniformly low. This particular scenario will be further discussed

and analysed in conjunction with the subsequent figures.
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Figure 3.17: Normalised difference between probabilities of the evidence set including s∗ and
s1 that is 1 bit away from s∗ for error rate ϵ ∈ {0.1, 0.2, 0.3, 0.4}. The difference between
probabilities are maximised at a higher threshold for higher error rates.

From Figure 3.16 we see that the optimal Hamming thresholds for achieving the best

performance vary depending on the error rates. In particular, when ϵ = 0.3, from Figure 3.16c

we see that accuracy is highest across the whole fusion and evidence rate parameter space when

H̃ = 2 or H̃ = 3. For higher levels of imprecision there is then a relatively uniform decrease in

performance across the parameter space; see particularly the first column from the right when

H̃ = 7. In general, these results indicate that highest overall accuracy is obtain for moderate

levels of imprecision when using the proposed neighbourhood approach. For lower error rates,

Figures 3.16a and 3.16b show that optimal performance is achieved with relatively low Hamming

thresholds of H̃ = 1 and H̃ = 2 for ϵ = 0.2, and H̃ = 0 and H̃ = 1 for ϵ = 0.1. This suggests

that at lower error rates, mroe precise evidence is effective for obtaining high accuracy in the

system. In contrast, as shown in Figure 3.16d, at a higher error rate of ϵ = 0.4, the model

suggests that best performance is achieved with considerably higher Hamming thresholds of

H̃ = 3 and H̃ = 4, i.e. in scenarios where the error rate is higher, more imprecise evidence may

actually be advantageous for improving the overall accuracy of the learning system. Hence, in

general these results suggest a pattern of performance in which the higher the error rate, the

higher the level of imprecision at which the best accuracy is obtained.

One way to investigate the trade-off involved in the use of imprecise evidence in the form of

Hamming distance thresholds, is to consider how increasing the threshold will increase both the

probability that the true state of the world is included in the evidence, whilst also increasing
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the probability that erroneous states are included as well. More specifically, it seems desirable

to select a Hamming distance threshold such that the probability of true state of the world

being in the evidence neighbourhood is high, while the probability of any state different from

the true state being in the neighbourhood is low. Notice that the states which differ from the

true state, which have the highest probability of belonging to the evidence neighbourhood, are

those which have a different truth value for exactly one of the propositions under consideration.

As above let s∗ denote the true state of the world, and let s1 denote one of the states that differ

from s∗ in exactly one proposition i.e. H(s∗, s1) = 1. Also as above let se denote the estimated

state of the world obtained through evidence collection. Then a desirable Hamming threshold

H̃ = t could be one that maximises P (s∗ ∈ E(se, t)) − P (s1 ∈ E(se, t)). The probabilities of s∗

and s1 being in the imprecise evidential set E(se, t) are as follows:

P (s∗ ∈ E(se, t)) = P (H(se, s
∗) ⩽ t) =

t∑
i=0

(
n

i

)
ϵi(1 − ϵ)n−i(3.5)

P (s1∗ ∈ E(se, t)) = P (H(se, s1) ⩽ t)(3.6)

= ϵ(1 − ϵ)n +
t∑

i=1

(
n− 1

i− 1

)
ϵi−1(1 − ϵ)n−i+1 +

t∑
i=1

(
n− 1

i

)
ϵi+1(1 − ϵ)n−i−1(3.7)

Figure 3.17 shows the normalised difference between the two probabilities;

P (s∗ ∈ E(se, t)) − P (s1 ∈ E(se, t))

max{P (s∗ ∈ E(se, t)) − P (s1 ∈ E(se, t)) : t}
(3.8)

for different threshold values t. Results suggest that the threshold which maximises this

probability difference increases as the error rate increases, again suggesting that increasing

imprecision may improve performance in high-inaccuracy scenarios. These results are broadly

consistent with the simulation results shown in Figure 3.16

A common trade-off in social learning is between speed of learning and accuracy of learning;

known as the speed vs. accuracy trade-off. This has been studied extensively across the collective

intelligence literature from insect swarms to swarm robotics[5, 47, 80]. In the context of evidence

neighbourhoods, we can consider the impact of different levels of evidential imprecision on time

to convergence. We define convergence as all agents reaching a consensus on a singleton belief,

i.e. all agents agree that the singleton belief represents the true state of the world s∗. Figure 3.18

shows the time steps to consensus for different Hamming threshold values and error rates, with

lighter colours indicating less convergence time steps. A maximum limit of 20000 time steps is

set for each simulation, i.e. this will be used as the convergence time for any simulation run

that fails to convergence within 20000 time steps to get the average value. It is significant to

note that the system exhibits increased robustness to varying evidence rates and error rates

when the fusion rate is low, as demonstrated in Figure 3.16. However, a trade-off exists, as
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Figure 3.18: Average number of time steps until convergence τ at steady state for different evi-
dence imprecision defined by various Hamming thresholds H̃ and error rate ϵ ∈ {0.1, 0.2, 0.3, 0.4},
From left to right: H̃ ∈ {0, ..., 7}. In each heat map, the y-axis and x-axis respectively represent
ρ ∈ [0.02, 1) and σ ∈ [0.02, 1), The axis labels for the heat maps are provided in the top left cell
as an example. The number of time steps to reach consensus is primarily determined by the
fusion rate, except when the evidence rate is low or evidential updating is notably imprecise. For
thresholds aimed at higher learning accuracy, the speed of reaching consensus is compromised
compared to standard precise updating.

lower fusion rates requires a greater number of time steps for agents to achieve consensus, as

shown in Figure 3.18. For example, for H̃ = 2, comparing Figure 3.16c to Figure 3.18c, for low

fusion rates (σ ∈ (0, 0.1)), agents reach consensus after 100 to 300 time steps with an accuracy

close to 1, even for very low evidence rates. Whereas for low evidence rates and the highest

fusion rates σ ∈ (0.9, 1), the average accuracy is much lower (around 0.8) but a consensus is

reached within just 20 time steps.
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From Figure 3.18 we also see that the system exhibits slower convergence with increasing

error rates when H̃ ⩽ 3, whereas convergence accelerates with higher error rates when H̃ ⩾ 6.

For H̃ ∈ {4, 5}, the most rapid convergence is observed at medium error rates, specifically when

ϵ = 0.2 for H̃ = 4 and ϵ = 0.3 for H̃ = 5. One possible explanation for this phenomenon is that,

under conditions of highly imprecise evidence and low error rates, agents are more likely to

receive similar imprecise evidence at different time steps. Consequently, their beliefs remain

imprecise following the fusion process. As a result, a greater number of time steps are required

to accumulate sufficient variation through errors, which in turn drives the cardinality down and

facilitates convergence. This insight highlights the intricate relationship between error rates,

evidence imprecision, and system dynamics in the context of social learning models.

The heat maps presented suggest that the convergence speed is primarily influenced by the

fusion rate under conditions of low to intermediate evidence imprecision and high error rates.

In contrast, the impact of evidence becomes more significant when the error rate is low and the

degree of evidence imprecision is high. For example, in Figure 3.18c, when H̃ < 6, the speed of

learning is mainly related to the fusion rate σ, i.e., the learning speed is slower for lower fusion

rates. For H̃ ⩾ 6, a high evidence rate ρ would also speed the convergence up. In addition, for

a higher error rate, evidence rate ρ start to influence the convergence speed from a lower H̃,

i.e., less imprecise evidence. For instance, in Figure 3.18a, the evidence rate starts to have a

significant influence from H̃ = 4 and for higher levels of evidential imprecision, the evidence

rate has a much greater influence than the fusion rate. This underscores the need for a balanced

approach to optimizing both fusion and evidence rates, particularly as the nature and degree of

imprecision and error in evidence vary.

These heat maps also suggest that increasing evidential imprecision to a limited extent does

not necessarily slow learning. For example, in Figure 3.18c, the agents reach consensus within

100 time steps for most evidence and fusion rate combinations for H̃ ⩽ 6. Furthermore, the

threshold values which result in highest accuracy do not slow convergence and sometimes faster

than that of other thresholds. For example, in Figures 3.16b and 3.18b, both the highest overall

accuracy and the fastest convergence is obtained when H̃ = 1 or H̃ = 2. In summary, certain

levels of imprecision not only yield higher overall accuracy but also facilitate faster convergence,

highlighting the potential benefits of incorporating hamming neighbourhood imprecisision to

evidence for the social learning models.

3.5 Imprecision and robustness in social learning

Robustness to variation in underlying conditions is important in this social learning context

since environments are often dynamic and our knowledge of them is usually limited. For example,

evidence and fusion rates may be varying and difficult to predict in advance, since different

factors may influence agents’ capacity to collect evidence or interact with each other during the
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learning process. In order to evaluate the influence of different levels of evidential imprecision

on the robustness to different evidence and fusion rates, we can use aspects of info-gap theory

proposed by [81]. Info-gap theory provides theoretical tools to aid decision making under severe

uncertainty, by analyzing robustness to variation around a set of estimated parameter values

representing the best available knowledge of the underlying conditions of the system. We apply

the info-gap theory to evaluate the robustness of different levels of Hamming thresholds H̃ to

the variation in the fusion and evidence rate, σ and ρ.

Suppose we have estimates of the evidence and fusion rates for a given social learning

problem, denoted by ρ̂ and σ̂, respectively. Let U(h) denote a neighbour of (σ̂, ρ̂) in the

parameter space of size h. This is referred to in info-gap theory as an horizon of uncertainty.

U(h) = {(σ, ρ) ∈ (0, 1)2 : |σ − σ̂| ⩽ h, |ρ− ρ̂| ⩽ h}(3.9)

The robustness at (σ̂, ρ̂) is then defined as the size of the largest horizon of uncertainty for

which the average learning error 1 − α is guaranteed to not exceed a critical maximum value δ.

For different values of δ we then have the following robustness function:

ĥ(δ) = max{h : m(h) ⩽ δ}(3.10)

where m(h) = max{|1 − α(σ, ρ)| : (σ, ρ) ∈ U(h)} is the maximum error across all parameter

values in the horizon of uncertainty of size h.

Figure 3.19 illustrates the application of info-gap theory to the current context. Suppose

that σ̂ and ρ̂ are at the centre of the parameter space i.e. σ̂ = ρ̂ = 0.5. Let ĥ1 and ĥ2 be

robustness functions for two different algorithms. Then if ĥ1(δ) ⩾ ĥ2(δ) for all δ we say that

algorithm 1 robust dominates algorithm 2 at parameter estimates ˆsigma and ρ̂. In other words,

for every tolerance level δ there is a larger neighbourhood of (σ̂, ρ̂) for which the error tolerance

constraint is guaranteed to be met for algorithm 1 than there is for algorithm 2. This is a

clear indication that under these conditions the performance of algorithm 1 is more robust to

variation in fusion and evidence rates than algorithm 2 for all tolerance levels. On the other

hand, if the robustness curves ĥ1 and ĥ2 cross then this suggests that there are some levels of

tolerance at which algorithm 1 is more robust and some at which algorithm 2 is.

To better understand how varying levels of evidential imprecision interact with environments

of different levels of evidential inaccuracy, we investigate the robustness of our imprecise evidence

model at different error rates. In Figure 3.20, we show the robustness curves, denoted as ĥ(δ) for

various Hamming thresholds H̃ ∈ {0, 1, 2, 3, 7} and different error rates ϵ ∈ {0.1, 0.2, 0.3, 0.4},

under the assumption that (σ̂, ρ̂) = (0.5, 0.5). In Figure 3.20a, the robustness curves for H̃ = 0

and H̃ = 1 (represented by the yellow and orange lines) are generally greater than those for

other greater Hamming thresholds H̃, except when the error tolerance δ ∈ (0.06, 0.08). In this
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Figure 3.19: Diagram showing the horizon of uncertainty in Info-Gap Theory as a neighbourhood
of the estimated fusion and evidence rates (σ̂, ρ̂).

specific range, curves for higher levels of evidential imprecision marginally exceed the curve for

H̃ = 0. For a specific tolerance of error δ = 0, the system remains robust for H̃ = 0 and H̃ = 1,

within the evidence and fusion rate ranges of (0.5−0.35, 0.5+0.35)2 and (0.5−0.36, 0.5+0.36)2,

respectively. On the other hand, for higher thresholds H̃ = 2 and H̃ = 2, the level of system’s

robustness is significantly lower for low level of tolerance δ < 0.05. Moreover, for higher levels of

imprecise evidence, such as H̃ = 3 and H̃ = 7, the system is not robust to low error tolerance,

δ < 0.02, at all. In summary, for a low error rate ϵ = 0.1, applying a Hamming neighbourhood

to the evidence does not significantly enhance the system’s robustness and therefore this form
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Figure 3.20: Robustness curves for various evidence imprecision levels, ρ̂ = 0.5, σ̂ = 0.5, and
different error rates: (a) ϵ = 0.1; (b) ϵ = 0.2; (c) ϵ = 0.3; (d) ϵ = 0.4. The optimal imprecision
for maximal robustness varies by error rate and tolerance — higher error rates/ tolerance
require increased imprecision.
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of imprecise evidence negatively impacts the system’s ability to adapt to variations in both

evidence and fusion rates.

For higher error rates ϵ ∈ {0.2, 0.3, 0.4}, we see more significant advantage of applying

imprecise evidential updating. From Figures 3.20b to 3.20d the robustness curves for H̃ =

1(orange lines), H̃ = 2(red lines), and H̃ = 3 (purple lines) are everywhere greater than the

curve for H̃ = 0. This indicates that these moderate levels of imprecise evidence is more robust

for all tolerance levels δ than the most precise evidence (when the Hamming threshold is not

applied). We also observe a trend indicating that the system should employ higher levels of

evidential imprecision to achieve greater robustness for higher error rates for low levels of error

tolerance. Specifically, within the range of δ ∈ [0, 0.1], the greatest robustness is achieved by

a threshold value of H̃ = 1 or H̃ = 2 for ϵ = 0.2, by a threshold of H̃ = 2 for a higher error

rate ϵ = 0.3, and by a threshold of H̃ = 3 for a even higher error rate ϵ = 0.4. In summary,

our findings indicate that imprecise evidential updating contributes to enhanced robustness in

social learning models in noisy environments.

Our findings also suggest the most imprecise evidence(H̃ = 7) can sometimes be the optimal

level for robust system performance, as tolerance to error increase. In Figure 3.20b where the

error rate is ϵ = 0.2 the robustness curve for the high imprecision level of H̃ = 7 is dominated

by the robustness curves for H̃ ∈ {1, 2, 3} showing that it is the least robust model of these

imprecise evidence models. On the other hand, it crosses the curve for H̃ = 0 at δ = 0.1 showing

that it is slightly more robust than the most precise evidence model if the tolerance to error is

higher than 0.1. However, in Figure 3.20c showing the higher error rate ϵ = 0.3, the robustness

curve for H̃ = 7 crosses all other robustness curves so that there is a small range of higher

tolerance values for which it is the most robust imprecise evidence model. Similarly, at an

even higher error rate of ϵ = 0.4 as shown in Figure 3.20d, the robustness curve for H̃ = 7 not

only intersects those for H̃ = 2 and H̃ = 3 but also surpasses the curve for H̃ = 1, making it

the most robust model for handling imprecise evidence in a range of error tolerance level. In

other words, in these cases the highly imprecise model is more robust than other more precise

evidential models if the tolerance to error is relatively high. Overall, this suggests that in noisy

environments the level of error that is acceptable will play a role in deciding which level of

evidential imprecision is most robust.

3.6 Conclusions

In this chapter we have emphasised the difference between imprecision and error (inaccuracy).

The former in our set-based model can be modelled directly by the cardinality of the evidence

sets while the latter describes the difference between the evidence gathered and the true state

of the world s∗ and can be modelled by a probabilistic parameter, the error rate ϵ.

The simulation results of the proposed set-based model have suggested that social learning
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is robust to different levels of imprecise evidence. Furthermore, we have also suggested a multi-

robot location classification type problem with smaller population size, in which the imprecision

of evidence gathered by the robots may vary because of hardware or environment constraints.

We then introduced a novel parameter Nu to limit the maximum number of locations that

the robots can visit in an evidence collection episode, thereby changing the precision of the

evidence. Using robot simulations described in Section 3.3.2, we found that in both moderately

noisy scenarios and highly noisy scenarios (ϵ = 0.2 and ϵ = 0.3), our model was shown to

be robust to noisy evidence, achieving an accuracy above that of the theoretical error for all

upper-bound limits Nu. Under our model, we have shown that the robots’ average accuracy

is robust to different levels of imprecise evidence while there is a slight decrease at the most

imprecise evidence scenario(Nu = 1). We have also found that increasing the number of robots

can decrease the variation of the system’s average accuracy at different levels of imprecise

evidence. The results of our robot simulation experiments show that our approach has strong

potential to be applied to location classification tasks conducted by multi-robot systems.

The most significant advantage of the proposed approach is that it scales with scenarios in

which the number of locations is greater than the number of robots(i.e. k < n). Moreover, in our

approach each robot does not have to investigate every location for the system to reach consensus.

there can be good performance in scenarios in which access to some locations is restricted, either

by the range of the robots (e.g., due to power constraints) or a heterogeneous system possessing

different levels of access or capabilities. One limitation of the proposed approach is that both

the number and positions of the locations need to be known by the robots ahead of time. This

is not a significant drawback for many tasks in which the environment is well-known or highly

controlled, for example, search and rescue missions in mapped environments or warehouse

robotics. Future work includes the ability to adapt to unseen or dynamic environments in

which the robots discover the existence of new locations in an online manner. Another possible

direction is to explore the effects of malfunctioning robots in the system.

For a certain type of imprecise evidence, where agents obtain an estimate of the true state

of the world and then take a neighbourhood of that estimate, there can actually be benefits of

imprecise evidence. The results showed that the overall best accuracy and fastest convergence

speed can be obtained with an intermediate level of precision depending on the error rate.

Furthermore, certain levels of imprecision can enable more robustness to variations in fusion and

evidence rate than can be obtained from a precise evidence model. Indeed in high error scenarios

there are even some levels of tolerance at which the most imprecise evidential model is also the

most robust. Our probability model have showed that the proposed neighbourhood imprecise

evidence model can increase the difference between the probability of s∗ being included in

the evidence sets and that of the distract states, which supports that this type of imprecise

evidence can improve the system’s accuracy.

In light of previous work on imprecise fusion described in Chapter 2, we intend to investigate
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whether there are advantages in combining imprecision in both the fusion and evidential

updating processes in Chapter 4. A best-of-n problem was explored in [12] using e-Pucks in

a similar robotic setup. It would be intriguing to apply the probabilistic belief model to the

location classification problem to further compare the effectiveness of different belief models.

For example, a state of world can be associated with a probability of its being the true state

of the world s∗. Agent’s belief can then be represented as the probability distribution of s∗.

Other types of belief models are also worth studying to further investigate the benefits of

imprecision. For instance, for a probability-based belief model, an imprecise probability model,

such as interval probabilities and upper and lower probabilities, can be applied to assess the

impact of varying levels of evidential imprecision. Another avenue of future research will be to

add communication constraints to the model, such as network connectivity or physical distance

range. There are recent studies showing that limited connectivity can improve the performance

of social learning [38] and that constrained communication of multi-agent systems can be more

robust to the environment changes [8].
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Chapter 4

Combining Imprecise Evidence and

Fusion

In Chapter 3, we introduced a framework for representing evidence with varying levels of

imprecision. We then employed both agent-based and robotic simulations to investigate social

learning in the context of imprecise evidence. This demonstrated our model’s robustness

to imprecise evidence and its potential applicability in multi-robot systems. Subsequently,

we introduced a Hamming neighbourhood approach to investigate the potential benefits of

intentionally adding imprecision to the evidence. Our findings indicated that a low to medium

level of evidence imprecision could improve the overall accuracy of social learning, depending

on different levels of error rates, without compromising the speed of reaching consensus.

We have observed that incorporating imprecision in fusion or evidential updating can

independently enhance the overall accuracy of social learning. In this chapter, we aim to

provide a comprehensive analysis of a combined model by integrating the Jaccard operator

(eq. (2.2)) into the Hamming neighbourhood model, in order to investigate the potential benefits

of implementing imprecision in both processes simultaneously, potentially leading to a more

effective and robust model. In this chapter, we present agent-based simulation experiments to

investigate a version of our model with imprecision in both evidential and fusion processes.

In order to thoroughly assess the model’s performance, we consider various combinations of

evidence (ρ) and fusion (σ) rates and distinct Hamming (H̃) and Jaccard (γ) thresholds.

We evaluate the model using the accuracy and robustness measures described in Chapter 3.

It is important to note that the population may not converge to a shared singleton belief when

γ is high, see Figure 2.10. To address this potential issue and further refine our understanding

of the model, we also explore the cardinality of the agents’ beliefs. Building on the findings

in Chapter 2, which showed improved social learning accuracy with a low evidence rate using

imprecise fusion, we hypothesise that combining this approach with an imprecise evidential

updating strategy can further enhance accuracy when the evidence rates is low. This integrative

framework aims to offer a comprehensive understanding of the dynamics involved in social
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learning, particularly in terms of handling imprecise evidence and belief fusion.

4.1 Related Work

In this chapter, we introduce an integrated approach that combines the imprecise fusion models

discussed in Chapter 2 and imprecise evidential updating in Chapter 3. As such, all the scholarly

work cited in Section 2.1 and Section 3.1 continues to hold relevance and offers pertinent

connections to the research proposed in this chapter.

4.2 Model

As in Chapter 2 and Chapter 3, we assume that the environment being learnt about can be

described by a finite set of propositions P = {p1, ..., pn}. A state s is a function s : P → {0, 1}n.

For notational convenience we represent a state s by the n-tuple ⟨s(p1), . . . , s(pn)⟩. Uncertain

beliefs are subsets of S with cardinality |B| > 1, while a singleton belief B = {s} represents

that an agent is certain that s is the true state.

As in Section 3.4, we assume the evidence collected by the agents precisely identifies a

possible true state se, i.e., se ∈ S and E = {se}. Error rate ϵ is also modelled the same way,

agents receive se(pi) = s∗(pi) with probability 1 − ϵ and se(pi) = 1 − s∗(pi) with probability ϵ

for i = 1, . . . , n. Agents will update their belief based on Equation (2.6) and Equation (3.4) as

follows:

B|E =

B ∩ E(se, H̃) : B ∩ E(se, H̃) ̸= ∅

B : otherwise
(4.1)

Agents fuse their belief pairwisely using Equation (2.2) as follows:

(4.2) B1 ⊙γ B2 =

{
B1 ∩B2 : J(B1, B2) > γ

B1 ∪B2 : J(B1, B2) ⩽ γ

4.3 Agent-based Simulation Results

In this section, we present the results of the agent-based simulation results exploring the

coherence of imprecise evidence, parameterised as H̃ ∈ [0, 7] and imprecise fusion, parameterised

as γ ∈ [0, 1]. We conduct experiments exploring all eight possible H̃ values, as outlined in

Chapter 3, and nine γ values, specifically γ ∈ {0, 18 ,
2
8 , . . . , 1}. There are 19949 potential γ

values when considering a language size of n = 8 and hence an exhaustive sweep of parameter

space as in Chapter 2 will not be possible. We explore various evidence rates and fusion rates in
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Figure 4.1: Average accuracy after 20000 iterations for H̃ ∈ {0, . . . , 7} and γ ∈ [0, 1], and various
combinations of evidence and fusion rates. System robustness to imprecision hinges on the
balance between evidence and fusion rates, with high evidence and low fusion rates achieving
higher accuracy, while lower evidence or higher fusion rates demand moderate imprecision for
optimal accuracy.
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the range ρ, σ ∈ [0.02, 1)2. This allows us to explore a broad range of parameter combinations

while maintaining a manageable scope for the experiments. Throughout all the experiments

in this chapter, we maintain the following fixed parameters: a population size of k = 100, a

language size of n = 8, and an error rate of ϵ = 0.3. To account for random variation, each

combination of parameters is evaluated over 50 simulation runs. Additionally, a cap of 20000

time steps is set for each simulation run to ensure a reasonable time frame.

In Figure 4.1 we show the average accuracy for different combinations of Hamming thresholds

H̃ and Jaccard thresholds γ, for various evidence and fusion rates. Each cell of the heat map

display the average accuracy as defined by Equation (3.1). Lighter and darker colours indicate

higher and lower accuracy, respectively. We see from Figure 4.1a that a low fusion rate and a

high evidence rate can still be robust to the different levels of imprecision except when both

evidence and fusion are highly imprecise (H̃ ⩾ 5 and γ ⩾ 0.5). In other words, when the fusion

rate is low and the evidence rate is high, neither imprecise evidential updating nor imprecise

fusion are essential for improving learning accuracy. For lower evidence rates and higher fusion

rates, the system is less robust to different combinations of H̃ and γ, i.e. fewer levels of evidential

imprecision H̃ and fusion imprecision γ yield high accuracy. In these scenarios, a moderate level

of both evidential and fusion imprecision tends to produce the best results. For example, in

Figure 4.1g we see the best accuracy is obtained when γ = 1
8 and H̃ = 2 for a low evidence rate

and a low fusion rate (ρ = σ = 0.04). In summary, the relationship between evidence and fusion

rates directly impacts the system’s robustness to different levels of imprecision in both evidence

and fusion. Systems with high evidence rates and low fusion rates are generally more robust to

imprecision, except in cases where both are extremely imprecise. On the other hand, systems

with low evidence rates and high fusion rates are less robust of variations in evidential and

fusion imprecision and in these cases a low to moderate level of imprecision of both evidential

updating and belief fusion is required to achieve the highest accuracy.

To better understand how combined imprecision affects accuracy across varying evidence

and fusion rates, we show Figure 4.2. This nested heat map shows the average accuracy for

experiments conducted with various levels of imprecise evidence and imprecise fusion operators,

as well as for different evidence rate ρ ∈ [0.02, 1) and fusion rate σ ∈ [0.02, 1). The child heat

maps, contained within each cell of the parent heat map, display the average accuracy. Lighter

and darker colours indicate higher and lower accuracy, respectively. For every H̃, the highest

overall accuracy are achieved when γ = 0.125 among all fusion thresholds investigated and for

γ > 0.125, the overall accuracy monotonically decreases as more imprecise fusion operator are

applied.

In situations where more imprecise fusion operators are applied, the population does not

always converge with an accuracy higher than 1 − ϵ for certain combinations of evidence rate

and fusion rate. Lower accuracy is visually represented by the dark areas in Figure 4.2. As

the degree of imprecision in fusion increases, there are more combinations of evidence and
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Figure 4.2: Average accuracy α at steady state for different evidence imprecision for ϵ = 0.3.
In each cell, the y-axis and x-axis respectively represent ρ ∈ [0.02, 1) and σ ∈ [0.02, 1). The
axis labels for the heat maps are provided in the top left cell as an example. Overall learning
accuracy across different combinations of evidence and fusion rates peaks at moderate levels of
evidential and fusion imprecision (H̃ = 2, γ = 0.125).
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fusion rates that lead to poor performance, i.e. the dark area indicating poor performance

grows. For fusion imprecision levels ranging from low to intermediate (i.e., γ in the interval

(0, 0.5]), the application of imprecise evidential updating eliminates the poor performance. With

more imprecise fusion operators, the size of the dark areas decreases for evidential updating

thresholds upto H̃ = 2. However, as the system employs more imprecise evidence updating, the

dark areas progressively grow in size.

The location of the dark areas is also significantly influenced by the level of evidential

imprecision. When the threshold for evidential updating, denoted as H̃, is low, the system

accuracy is below 1 − ϵ if the evidence rate is relatively lower than the fusion rate. In scenarios

where both evidential updating and fusion are moderately imprecise, the system’s performance

is poor when the evidence rate and fusion rate are approximately equivalent. Conversely,

in situations with significant imprecision in evidential updating, the system’s performance

deteriorates when the evidence rate is relatively high in comparison to the fusion rate, especially

if the fusion process is also highly imprecise. When the fusion exhibits maximal imprecision,

the population does not reach an accuracy over benchmark (1 − ϵ) for any pairs of evidence

rate (ρ) and fusion rate (σ).

Consistent with the results using the standard fusion operator(i.e. γ = 0), the best perfor-

mance is obtained when the evidence is low to intermediate imprecise, i.e. H̃ = 2 or H̃ = 3 for

low imprecise fusion operators, e.g. for the imprecise level γ = 0.125 that the best performance

is obtained. For more imprecise fusion operators, the variation of accuracy over the parameter

space of ρ against σ shows more complex pattern. For γ ∈ {0.25, 0.375, 0.5}, we see that

for moderately imprecise evidential updating, the accuracy is lower when the evidence rate

and fusion rate are more similar. For more imprecise evidential updating, we see the poor

performance area shift to greater evidence rates and smaller fusion rates. Therefore, in these

cases, the best evidential threshold in terms of accuracy is dependent on the combination of

certain evidence and fusion rates. When the difference becomes more significant, the system’s

performance becomes more accurate and a clear boundary can be observed between the low

and high accuracy areas. For even higher thresholds, γ > 0.5, we see more bands and clearer

boundaries between those bands, with various levels of accuracy, including the dark areas

mentioned before.

In summary, our results suggest that the interaction between the level of imprecision in

evidential updating and fusion processes significantly affects the overall system accuracy. The

best performance is often observed at low to moderate levels of fusion and evidential imprecision.

For high levels of imprecision, the system becomes increasingly sensitive to the balance between

evidence and fusion rates, and the optimal combinations for these rates may vary depending on

the level of imprecision.

There are two potential causes for the observed low accuracy: either the population reaches

an incorrect consensus, or the population fails to achieve a consensus on a singleton belief,
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Figure 4.3: Average cardinality |E| at steady state for different evidence imprecision for ϵ = 0.3.
In each cell, the y-axis and x-axis respectively represent ρ ∈ [0.02, 1) and σ ∈ [0.02, 1). More
imprecise fusion operators tend to produce more imprecise final beliefs, i.e. the population
struggling to reach a singleton belief with higher levels of fusion imprecision unless σ is relatively
low compared to ρ.
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indicating that the agents’ final beliefs remain imprecise. To identify the root cause of the

diminished accuracy represented in Figure 4.2, we present Figure 4.3, which demonstrates

the average cardinality (expressed in a logarithmic scale) of agents’ beliefs in the population

following 20, 000 iterations, across 50 independent simulations. Lighter colours indicate lower

cardinalities, for example 0 indicates the singleton belief |B| = 1 while darker colours represents

higher cardinalities and more imprecise beliefs.

From Figure 4.3, we see that generally more imprecise fusion operators result in more

imprecise final beliefs. When the most precise operator(the first column) is used, the population

reaches a consensus on a singleton belief for every evidential imprecision. For imprecise fusion

operators (γ > 0), the population fails to converge to a singleton belief within 20000 iterations

in some scenarios. The average cardinality of the agents’ belief is generally smaller for more

imprecise evidential updating when low to intermediate imprecise fusion operators are applied

(γ ∈ [0.125, 0.5]), and is greater when more imprecise operators (γ ∈ [0.625, 1])are used.

For γ ∈ [0.125, 0.375], the average cardinality can vary depending on different combinations

of evidence and fusion rates. when the evidence rate is low compared to the fusion rate, the

population’s average belief cardinality is close to 28(in black) for less imprecise evidential

updating. The latter is the cardinality of an ignorant belief that the agents initially hold before

learning. In other words, the population learns very little about the state of the world on

these occasions. For more imprecise evidential updating, the system ends with much lower

cardinalities for any combination of ρ and σ. For H̃ ∈ [2, 4] we see that the system does not

converge when ρ and σ is closer to each other and converges to singleton otherwise. For higher

evidential imprecision, we see that the system converges to a singleton belief when the fusion

rate is high enough.

The specific combination of imprecise fusion operators and the thresholds for evidence

updating and fusion may introduce constraints and biases that shape the system’s behaviour.

These constraints can create distinct regimes where the system’s performance is influenced

primarily by the interaction between the evidence rate and fusion rate, resulting in the emergence

of separated areas with uniform cardinality. For example, for imprecise operators γ ∈ (0.5, 1),

we see that the system converges to a singleton belief with much less combination of ρ and σ.

Similar to less imprecise operators, for more precise evidential updating, the system barely

learns anything when the evidence rate is low compared to the fusion rate. In contrast, for more

imprecise evidential updating(H̃ ∈ [5, 7]), the system ends with a cardinality close to 28 when

evidence rate is relatively high compared to the fusion rate. For moderately imprecise evidential

updating, the convergence behaviours become complicated. For example, when H̃ = 3, γ = 5
8 ,

see Figure 4.4, there are several ‘contour line’ of cardinalities starting from the bottom left;

(ρ, σ) = (0.02, 0.02). Counterclockwise, we see cardinality in log scale around 1, 6, 4, 2, 0.5

and 0. Further investigation into the underlying mechanisms governing the fusion process, the

nature of evidence updating, and the interplay between these factors could shed more light on
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Figure 4.4: Average cardinality |E| at steady state for different evidence imprecision for ϵ = 0.3,
σ ∈ [0, 1), and ρ ∈ (0, 1). The relative relationship between ρ and σ significantly influence the
average cardinality of the population.

the precise reasons behind the observed pattern. Such research could contribute to a deeper

understanding of the dynamics of imprecise fusion and its implications for decision-making

systems.

Imprecise fusion also introduces the potential trade-off between the speed of learning and the

accuracy of the learning outcome. To shed light on this trade-off, Figure 4.5 shows the average

number of time steps required to achieve consensus across 50 independent simulations. Lighter

colours here represents faster convergence and darker colours represents slower convergence.
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In cases where the system fails to converge within 20000 time steps, we consider the number

20000 as the value for analysis purposes.

From Figure 4.5, it is evident that the model exhibits slower convergence when imprecise

fusion operators are employed. When using the precise fusion operator, the model typically

converges within 100 time steps, unless the most imprecise evidential updating (H̃ = 7) is used or

the fusion rate is significantly low. For the low imprecision fusion operators (γ ∈ [0.125, 0.375]),

we see that the model converges faster with a higher fusion rate when highly imprecise evidential

updating is applied. Conversely, for lower levels of evidential imprecision, the model converges

faster when the fusion rate is relatively low compared to the evidence rate. When employing

more imprecise fusion operators (γ ⩾ 0.5) and low levels of imprecise evidence, the model does

not converge within 20000 time steps in most cases, unless the evidence rate is significantly

higher than the fusion rate. Furthermore, in cases where both the evidential updating and belief

fusion operator are highly imprecise, the model does not achieve convergence within 20000 time

steps for any combination of evidence and fusion rates.

The speed-accuracy trade-off becomes apparent in cases where the precise fusion operator

does not perform well in terms of accuracy, i.e. when the fusion rate is relatively higher than

the evidence rate. Analysis of Figure 4.2 reveals that the best overall performance is achieved

when using a fusion threshold of γ = 0.125 and evidential thresholds of H̃ ∈ {2, 3}. However,

Figure 4.5 demonstrates that for evidential thresholds of 2 or 3, the model requires more time

steps to converge when using a fusion operator with a threshold of 0.125 compared to the

precise fusion operator. Specifically, Figure 4.6 shows the average accuracy and time steps to

convergence for γ ∈ [0, 0.125, 0.25] and H̃ = 2. From Figure 4.6c and Figure 4.6d we see that

the system achieves higher accuracy when the fusion rate is high and the evidence rate is low

with γ = 0.125 than with γ = 0, however, the model takes more time steps to achieve the

higher accuracy, as shown in Figure 4.6a and Figure 4.6b. In other words, our results reveal a

trade-off between the speed of convergence and the accuracy of the model when the fusion rate

is high relative to the evidence rate, underscoring the need to carefully consider both accuracy

and convergence speed in system optimisation in such scenarios.

In this section, we have shown the simulation results for various levels of imprecision of

both evidence updating and belief fusion operators. The findings suggest that the optimal

learning accuracy can be achieved by introducing a certain level of imprecision in both the

evidence updating and belief fusion processes. It is important to note that convergence issues

arise when highly imprecise fusion operators are applied, particularly in conjunction with higher

levels of imprecise evidence. There exists a delicate balance between the level of imprecision

and achieving accurate learning outcomes. In addition, the model exhibits slower convergence

when employing imprecise fusion operators. The convergence behaviour is influenced by the

specific combination of evidential updating and fusion rates, with various scenarios leading

to slower or failed convergence within the given time frame of 20000 time steps. Therefore,
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Figure 4.5: Average time steps to convergence α at steady state for different evidence imprecision
for ϵ = 0.3. In each cell, the y-axis and x-axis respectively represent ρ ∈ [0.02, 1) and σ ∈ [0.02, 1).
Imprecise fusion requires more iterations to converge compared to standard precise fusion across
all levels of evidential imprecision, indicating a trade-off between speed and accuracy.
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Figure 4.6: Average times steps to convergence and accuracy for (ρ, σ) ∈ (0, 1)2, ϵ = 0.3, and
H̃ = 2. Comparing imprecise and precise fusion, we see a speed-accuracy trade-off when σ is
relatively high compared to the ρ
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achieving this higher accuracy requires an imprecise fusion operator especially when the fusion

rate is relatively high compared to the evidence rate but this increased accuracy comes at the

cost of requiring more time steps to reach consensus. Hence, a careful consideration of the

acceptable level of accuracy and the associated convergence time is crucial in the design and

implementation of imprecise fusion mechanisms.

As discussed in Section 3.5, in real world applications of social learning, the evidence rate ρ

and the fusion rate σ are both deeply uncertain and difficult to predict in advance, since the

environments are often dynamic and agents’ capacity to collect evidence and interact with each

other can be influenced by many factors. To evaluate the robustness of the integrated model,

we employ the info-gap theory again in Section 4.4.

4.4 Robustness of the Integrated Model

As discussed previously in Section 3.5, info-gap theory provides a useful framework for evaluation

of robustness. In this section we use aspects of info-gap theory to further evaluate the impact

of imprecise fusion operators and imprecise evidential updating on the robustness concerning

variations in ρ and σ. We recall the formulation of our robustness model as follows:

Suppose we have estimates of the evidence and fusion rates for a given social learning

problem, denoted by ρ̂ and σ̂, respectively. Let U(h) denote a neighbour of (σ̂, ρ̂) in the

parameter space of size h. This is referred to in info-gap theory as an horizon of uncertainty.

U(h) = {(σ, ρ) ∈ (0, 1)2 : |σ − σ̂| ⩽ h, |ρ− ρ̂| ⩽ h}

The robustness at (σ̂, ρ̂) is then defined as the size of the largest horizon of uncertainty for

which the average learning error 1 − α is guaranteed to not exceed a critical maximum value δ.

For different values of δ we then have the following robustness function:

ĥ(δ) = max{h : m(h) ⩽ δ}

where m(h) = max{|1 − α(σ, ρ)| : (σ, ρ) ∈ U(h)} is the maximum error across all parameter

values in the horizon of uncertainty of size h.

In Figure 4.7, we show application of info-gap theory to the integrated model for low to

moderate levels of fusion imprecision γ ∈ [0, 0.125, 0.25, 0.375] represented by the grey, blue,

cyan, and orange lines, respectively. These robustness curves illustrate the system’s robustness

under different combinations of imprecision in the fusion and evidence updating processes. By

examining the curves, we can gain insights into how changes in evidence and fusion imprecision

affect the system’s ability to maintain stable and accurate outcomes varying evidence and

fusion rate.
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Figure 4.7: The level of robustness ĥ against various levels of error tolerance δ ∈ [0, 0.2] for various
levels of evidence and fusion imprecision, H̃ ∈ {1, 2, . . . , 7} and γ ∈ {0, 0.125, 0.25, 0.375}, and
for estimate evidence and fusion rates (ρ̂, σ̂) = (0.5, 0.5), error rate ϵ = 0.3. The robustness
depends on the acceptable error tolerance δ, with most robust fusion imprecision thresholds γ
varying across different H̃ and error tolerances.

From Figure 4.7a we see that the acceptable error level, represented by the tolerance δ,

plays an important role in deciding which level of fusion imprecision is the most robust. For
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example, if the system’s acceptable error is δ = 0.1, with γ = 0.25 the system will be the most

robust. However, it crosses the curve for γ = 0.125 around δ = 0.12, showing that γ = 0.125 is

more robust for higher level of error tolerance δ > 0.12. For H̃ = 1, showing in Figure 4.7b, the

system is the most robust with γ = 0.125 for low tolerance δ < 0.06 and with more imprecise

fusion operators, γ = 0.25 or γ = 0.375 for a higher tolerance δ ∈ (0.06, 0.1). In summary, the

optimal fusion imprecision threshold γ values for system’s robustness is highly dependent on

the acceptable error tolerance δ.

The robustness of different levels of imprecise fusion operators also varies depending on the

levels of evidential imprecision. Starting from H̃ = 2, the acceptable level of error becomes

less significant in determining the most robust fusion imprecision level. In Figures 4.7c to 4.7e,

γ = 0.125 is the most robust for a low tolerance δ = 0.05. For a higher tolerance, up to δ = 0.2,

all different levels of fusion imprecision are similarly robust. For medium high levels of evidential

imprecision H̃ ∈ {5, 6}, a higher level of fusion imprecision of γ = 0.375 becomes the most

robust for all different tolerance δ, as shown in Figures 4.7f to 4.7g. In Figure 4.7h, where

the most imprecise evidential updating is applied, the robustness of different levels of fusion

imprecision becomes less distinct. All levels of fusion imprecision exhibit similar robustness,

being non-robust for low tolerances and robust for tolerances exceeding δ = 0.15.

In Section 3.5 we have demonstrated that the optimal evidential imprecision for the systems

robustness also varies depending on the level of error tolerance. Building on this, and to offer a

more comprehensive investigation of the combined effects of both imprecision, in Figure 4.8

we show the optimal combination of evidential updating threshold H̃ and fusion threshold γ

(represented by colours) that achieves the greatest robustness to various evidence and fusion

rates for error tolerance δ ∈ [0, 0.2]. For small tolerances up to δ = 0.05, the model with H̃ = 2

and γ = 0.125 exhibits the highest level of robustness. However, for δ = 0, this combination

is slightly less robust compared to the case with γ = 0.125, also shown in Figure 4.7c. For

moderate tolerances in the range of δ ∈ [0.05, 0.15], a higher level of evidential imprecision

(H̃ = 3) shows to be more robust. Regarding fusion thresholds, a range of values from γ = 0.125

to γ = 0.375 demonstrates similar levels of robustness, with minimal differences among these

thresholds. For higher tolerances within the range of δ ∈ [0.15, 0.2], H̃ = 2 remains optimal in

terms of robustness, while more imprecise fusion operators γ = 0.375 are required. In summary,

the analysis reveals that for higher tolerance levels, slightly more fusion imprecision can exhibit

greater robustness compared to γ = 0.125. However, for small tolerances, γ = 0.125 remains

the optimal choice for achieving the highest level of robustness.

4.5 Discussion and Conclusion

In this chapter, we have investigated social learning with the impact of both imprecise fusion

operators and imprecise evidential updating at the same time. Through a series of simulations
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Figure 4.8: Evidence updating and belief fusion threshold (H̃ and γ) that achieve the most
robust model for different levels of error tolerance (δ ∈ [0, 0.2]); and for estimate evidence and
fusion rates (ρ̂, σ̂) = (0.5, 0.5), error rate ϵ = 0.3. For different δ, the highest level of robustness
is achieve by different combinations of γ and H̃.

and analysis, we have gained valuable insights into the trade-offs and dynamics involved in

imprecise fusion and imprecise evidence in the context of social learning and decision-making.

One of the key findings is the social learning model can be improved under the joint influence

of imprecision in evidential updating and imprecision in belief fusion. In noisy environment,

adding a low to moderate level of imprecision to both the evidence updating and belief fusion

process, can improve the accuracy of the learning outcome, compared to using imprecise

evidential updating or imprecise belief fusion independently, especially when the evidence rate

is relatively low compared to the fusion rate.

We have also found that the use of imprecise fusion operators introduces a trade-off between

the speed of learning and the accuracy of learning outcomes. Compared with the standard

precise fusion operators, by introducing imprecision to belief fusion process, the model tend to

achieve higher accuracy but at the cost of slower convergence. The trade-off is more significant

when the fusion rate σ is high and the evidence rate is low. This trade-off underscores the

importance of carefully balancing the levels of fusion operators to achieve the desired learning

outcomes.

We have also explored the concept of robustness in the context of imprecise fusion and

imprecise evidence. By applying aspects of info-gap theory, we have evaluated the robustness

of different parameter combinations and identified optimal thresholds for achieving reliable
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and accurate outcomes. Our findings indicate that the choice of fusion imprecision level and

evidence imprecision level depends on the acceptable error level (tolerance) and the specific

requirements of the system.

Furthermore, we have explored the system’s robustness to various evidence and fusion rate

of this integrated model. Our results suggest that as the level of accepted error varies, the

model need to use different levels of evidential and belief imprecision. Generally, more imprecise

fusion fusion should be applied for higher levels of accepted error. For low and high levels of

accepted error, the optimal level of evidential imprecision slightly lower than for moderate

levels. These insights highlight the importance of adapting the imprecision levels based on the

specific requirements and tolerance for error in the system.

For future direction an in-depth investigation into the impact of different error rates is

warranted, as we have found in Chapter 3 that the optimal level of evidential imprecision is

depending on the error rates. In addition, investigating real-time adaptation of imprecision

levels in both fusion and evidential updating may be worthwhile. For instance, if an agent

undergoes consecutive evidential updating processes without fusion, it could increase the fusion

threshold, as this would not compromise speed when evidence is more frequent than fusion,

vice versa. Understanding how to dynamically calibrate these settings could facilitate more

efficient and accurate decision-making processes in social learning models.

In conclusion, this chapter has shed light on the interplay between imprecise fusion operators

and imprecise evidential updating in social learning models. The integration of both aspects

can enhance learning outcomes, with trade-offs in terms of speed and accuracy. Our findings

emphasise the significance of selecting appropriate imprecision levels and strike a balance to

achieve desired learning performance.
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Chapter 5

From Existing to Novel: Evidential

Updating Models

In Chapters 2 and 4, we investigated a fusion operator that allows for varying levels of

imprecision in the fusion results, determined by specific thresholds. Our findings demonstrated

that employing an imprecise operator with a certain level of imprecision can enhance the

accuracy of the learning outcome. Compared to the standard operator, the fusion operator with

the optimal threshold deems the beliefs of the fusion pair to be less reliable. As a result, it will

take the union of them when their consistency falls below the level specified by the threshold, i.e.

it will take union more frequently than the precise operator, especially in noisy environments.

Traditional evidential updating, on the other hand, narrows an agent’s belief when the evidence

supports it and agent would not update their beliefs in the case that the evidence is inconsistent.

The potential drawback is that this can result in the loss of inconsistent but potentially valuable

information in evidence. In order to address this, this chapter explores the ways the keep the

inconsistent information in the evidential updating process so that the agents will be able to

retain a broader range of evidence. We expect this to be particularly significant in environments

with high error rates, where agents are more likely to receive inconsistent evidence.

Specifically, we used a negative evidential updating strategy, which has proven to be

effective in best-of-n problems [19] in previous chapters. By intersecting the evidence with

the agent’s belief, this updating method excludes options that are deemed incorrect by both

sources, without increasing the belief cardinality or expanding the number of plausible states.

In essence, this approach to evidential updating refines and narrows down the agent’s belief

space. In this chapter, we introduce the union operation into the evidential updating process.

By incorporating union-based operations, we aim to expand the agent’s belief space so as to

allow for consider a broader range of possibilities when the agent’s belief is inconsistent with

the evidence received. We assume such an extension of the updating method allows for a more

comprehensive exploration of potential solutions and enhances the agent’s ability to adapt and

learn in complex and uncertain environments.
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We will begin this chapter by defining a new evidential update method that uses the

Dubois&Prade operator, the standard precise belief fusion operator we have deployed in this

thesis. Following this, we will present simulation results to investigate the implications and

advantages of incorporating union-based evidential updating, compared with the original

method. Additionally, we will introduce a novel approach to evidential updating, wherein

agents update their belief using a hybrid approach in order to combine the strengths of the two

methods. Simulation experiments will also be conducted to investigate and evaluate the efficacy

of the proposed new method. Through these experiments, we aim to gain deeper insights into

the performance and capabilities of the integrated approach, shedding light on its potential

benefits and applications in social learning systems and decision-making processes.

5.1 Related Work

In this chapter we investigate different evidential updating approaches with various levels of

evidential imprecision for the models presented in Chapter 3. As a result, the research presented

in Section 3.1 remains relevant and connection to the proposed investigation. In addition, we

also discuss and highlight various research studies that focus on different evidential updating

methods. These studies investigate updating beliefs based on different types of evidence, and

explore the implications of these methods in the context of social learning and decision-making.

In the context of the social learning literature, the evidence from the environment is often

represented as quality values assigned to different options and the agents are required to identify

the options with the highest qualities, e.g. [8, 13, 47]. In most cases agents update their beliefs

by comparing the quality values of different options using a specified updating method. In

[13] two methods are compared: one based on blind trust (direct comparison, DC) to the

evidence, and the other based on a probabilistic approach where agents abandon previously

collected evidence probabilistically (cross-inhibition). The latter makes decisions slower but

can reach higher accuracy in the presence of evidential error. Inspired by these findings, [12]

introduced a negative approach to utilizing evidence by enabling a comparison of quality values

between two options. Following the principle of “the global best must be the local best” [12], the

proposed negative updating aims to rule out certain options with lower quality values, by using

probabilistic pooling and updating approaches. Furthermore, employing negative updating

together with epistemic sets is shown to be able to solve problems with a much greater number

of options upto 95 with a smaller number of 10 agents [19]. We applied the same updating

method as [19] in both chapter 3 and chapter 4. In systems with set-based beliefs, negative

updating involves taking the intersection with the evidence, which results in the elimination

of inconsistent or less plausible states. On the other hand, positive updating entails taking

the union, which allows for the inclusion of new potential best options or true states into

agents’ beliefs, incorporating them as supportive evidence. [26] compared a set of evidence
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updating methods for a model in which agents’ beliefs are modelled by mass functions based

on Dempster-Shafer (DS) theory. The study shows that systems using positive and negative

updating together (Dubois&Prade rule) are slower but more accurate than those using pure

negative updating (Dempter’s rule) when the evidence is easily available to agents. This differs

from the findings observed in quality value based models. For set-based models, the impact of

positive and negative updating on set-based beliefs requires further exploration to understand

their implications in decision-making scenarios.

5.2 Combination operators for Evidence Updating

In this section, we compare two evidential updating methods, negative updating, which has been

used in the previous chapters, and the updating using Dubois&Prade operator(DP updating).

In particular, the only difference between the two methods is whether the agent update its

belief by union with the inconsistent evidence or simply ignore it. By incorporating the union

operation of the DP updating, we aim to let the agents increase the cardinality of their beliefs

by accepting a wider range of plausible states during the evidential updating. We begin by

providing a detailed description of the models and algorithms used in the simulation experiments.

We then present the simulation results including the accuracy and speed of learning for the

DP evidential updating approach. Through these investigations, we aim to shed light on the

advantages and disadvantages of incorporating the union operation compared with the classic

updating method and its potential applications in social learning and decision-making contexts.

5.2.1 Model

In order to investigate the impact of the DP updating to social learning, We revisit the

fundamental assumption that the environment can be represented by a finite set of propositions

P = {p1, ..., pn}. Consequently, a state of the world is defined as a function s that maps these

propositions to binary truth values. For notational convenience we represent a state by the

n-tuple ⟨s(p1), . . . , s(pn)⟩. We then assume that the evidence collected by agents precisely

identifies a potential true state se and the error rate ϵ is incorporated to account for potential

inaccuracies in the evidence, as in Chapters 3 and 4. For belief fusion we use the standard

Dubois&Prade operator as describe by Equation (2.3). For evidential updating we use the

Dubois& Prade (DP) operator, the same as the fusion operator of agents’ beliefs, as follows:

B|E = B ⊙ E =

B ∩ E : B ∩ E ̸= ∅

B ∪ E : otherwise.
(5.1)

From Chapter 3 we see that the precise evidence with only 1 state is not always the option

that produces the most accurate learning outcome, especially when the error rate is high.

Therefore, we will also explore imprecise evidence with different evidential thresholds H̃. The
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rationale for varying the level of evidential imprecision when comparing negative and DP

updating methods lies in the higher likelihood that more precise evidence will be inconsistent

with an agent’s beliefs, thereby, the differences between these two methods can be emphasised

by varying the level of evidential imprecision.

5.2.2 Agent-based Simulation

In this section, we present the results of agent-based simulation experiments to explore the

impact of different combination operators in evidential updating method. The simulations were

conducted under the same conditions as those in Section 3.4. The parameters used include

a population size of k = 100 agents, a language size of n = 8 propositions, and evidence

rates and fusion rates (ρ, σ) ∈ [0.02, 1)2. Each combination of parameters was subjected to a

maximum limitation of 20000 iterations and was simulated with 50 independent runs to reduce

the influence of random variations in the results.

In Figure 5.1 we show the the average accuracy of the population with error rates ϵ ∈
{0.2, 0.3, 0.4} for agents using negative updating and DP updating respectively. Note that

Figures 5.1a, 5.1c and 5.1e is a repetition of Figures 3.16b to 3.16d. For a low error rate ϵ = 0.2,

in Figures 5.1a and 5.1b we see that both updating methods have reached similar levels of

accuracy unless the evidence is updated with the more precise representation (H̃ = 0). For

H̃ = 0 agents using DP updating achieve higher accuracy compared with those using negative

updating. For a higher error rate ϵ = 0.3, we see higher accuracy for a population applying

DP updating for H̃ ⩽ 1, a wider range of evidential imprecision. In addition, for H̃ = 0 we see

a more significant improvement on accuracy The population only achieves an accuracy close

to 1.0 for a very low fusion rate when applying negative updating. On the other hand, agents

applying DP updating can achieve high accuracy for higher fusion rates as long as the evidence

rate is also high, as shown in Figure 5.1d. In summary, we have observed greater improvements

in accuracy for higher error rates and more precise forms of evidence. One possible explanation

for this trend is that with lower error rates, the evidence collected by agents is more likely to be

consistent with their belief, and with a larger H̃, the evidence neighbourhood evidence has a

higher chance of overlapping with the agents’ belief sets. As a result, the probability of agents

taking intersection during the updating process increases, leading to more similarity between

Dubois&Prade updating and negative updating when the error rate is low and the evidence is

imprecise.

For the highest error rate investigated, ϵ = 0.4, we observe reduced differences between

the two updating methods for highly imprecise evidence (H̃ ⩾ 4) in Figures 5.1e and 5.1f.

However, for H̃ < 4, more noticeable differences emerge. In particular, in Figure 5.1f, the

population using DP updating shows significantly lower accuracy (α < 0.7) when the fusion

rate is substantially lower than the evidence rate (the upper left corner of the heat maps)

Moreover, agents employing the negative updating method achieve considerably higher accuracy
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(a) ϵ = 0.2, negative updating

(b) ϵ = 0.2, DP udpating
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(d) ϵ = 0.3, DP updating
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Figure 5.1: Average accuracy at steady state for different levels of evidential imprecision with
negative updating or DP updating for different error rates ϵ ∈ {0.2, 0.3, 0.4}, σ ∈ [0.02, 1),
ρ ∈ [0.02, 1). From left to right: H̃ ∈ {0, ..., 7}. The axis labels for the heat maps are provided in
the top left figure as an example. At lower ϵ ∈ {0.2, 0.3} and low H̃, DP updating outperforms
in accuracy, particularly in left-side heatmaps (H̃ = 0). For ϵ = 0.4, DP updating’s performance
declines, especially when σ is lower than ρ.
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compared to agents using DP updating for the same fusion and evidence rate combinations.

In adjacent regions, in other words, for higher fusion rates, agents with DP updating achieve

higher accuracy values closer to 1.

In Figure 5.2, we present the average number of iterations used before the system converges

to a consensus. The maximum limit of 20000 iterations also applies to ensure that the simulations

do not run indefinitely. Darker colours represents slower convergence and lighter colours indicates

faster convergence. For the majority of the scenarios investigated, the population is able to

converge within 300 iterations while we see some exceptions where the error rate is high or the

evidence is highly imprecise. For negative updating, The impact on the speed of convergence of

different levels of evidential imprecision has been discussed in Chapter 3. For low and medium

error rate ϵ ∈ {0.2, 0.3}, for the most precise evidence, H̃ = 0, agents using DP updating are

slightly faster than agents using negative updating, see the left most figures of Figures 5.2a

to 5.2b. For H̃ > 0, there are no significant differences in the speed of convergence between

the two methods; The number of iterations required for consensus for both update methods is

smaller for a higher fusion rate when the evidence is not highly imprecise. For more imprecise

evidence, H̃ ⩾ 5, the impact of evidence rate on the speed of convergence become more

significant and for H̃ = 7 the speed of convergence is mostly dependent on the evidence rate.

For the higher error rate of ϵ = 0.4, the number of iterations to convergence exhibits

more significant differences between the two updating methods, particularly for less imprecise

evidence with H̃ ⩽ 3. Under DP updating, there is a region in which the fusion rate is notably

lower than the evidence rate (the upper left region of the heat maps), resulting in the population

failing to converge within 20000 iterations when H̃ ⩽ 3, as shown in Figure 5.2f. On the other

hand, negative updating demonstrates a higher level of robustness to different combinations of

fusion and evidence rate. In addition, negative updating demonstrates a stronger dependence

on the fusion rate, i.e. higher fusion rates lead to faster convergence. However, for DP updating,

the speed of convergence is influenced by both the evidence rate and the fusion rate when

H̃ = 2 or H̃ = 3, where faster convergence is observed only when both the evidence rate and

fusion rate are high.

In summary, our findings suggest that in terms of accuracy DP updating performs slightly

better than negative updating when the error rate is not high and the evidence is precise,

without compromising time efficiency. However, when the error rate is high (ϵ = 0.4), DP

updating leads to convergence problems that prevent the population from reaching a consensus,

particularly for more precise evidence, H̃ ⩽ 3. This is worthy of further investigation, as apart

from the combinations of σ and ρ where convergence is not achievable, the population achieves

the highest accuracy for H̃ ∈ [2, 4]. This indicates that the choice of updating method should

consider the specific conditions of the system, such as error rate, evidence precision, and the

desired level of accuracy. In the following section, we propose a new updating approach that

aims to combine the strengths of both DP and negative updating methods, in order to overcome
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Figure 5.2: Average number iterations before convergence for different levels of evidential
imprecision with negative or DP updating for different error rates ϵ ∈ {0.2, 0.3, 0.4}, σ ∈ [0.02, 1),
ρ ∈ [0.02, 1). From left to right: H̃ ∈ {0, ..., 7}. The axis labels for the heat maps are provided in
the top left figure as an example. For higher ϵ = 0.4 and smaller H̃, systems using DP updating
fails to reach a consensus.
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the limitations observed and enhance the overall performance of the social learning model.

5.3 Hybrid Evidential Updating

In this section, we propose a novel updating approach that addresses the convergence problems

observed with DP updating while enhancing the accuracy of negative updating under higher

error rates. By adopting a hybrid updating strategy that combines the DP and negative

updating under different conditions, we aim to achieve improved accuracy and convergence

properties for a wide range of fusion and evidence rates. We then evaluate the performance

of this new approach using agent-based simulations and compare it with DP and negative

updating methods.

5.3.1 Model

In order to combine the strengths of the two methods, we introduce a new approach inspired

by rough set theory [82] to represent the agents’ belief as B = ⟨B,B⟩, where B ⊆ B. Here, B

and B denote the lower and upper approximations of the possible true states of the world. We

will apply this rough belief representation to the evidential updating process as follows:

B||E = ⟨B,B⟩||E =

⟨B ∩ E, B ∩ E⟩ : B ∩ E ̸= ∅

⟨B,B ∪ E⟩ : otherwise
(5.2)

In the proposed updating approach, we only use the lower belief B for the evidential

updating operation. This means that in scenarios where agents consecutively receive two pieces

of evidence—in other words when no fusion events occur between the two evidential updating

processes—the second update will not retain the upper belief generated by the first update, if

the initial evidence was inconsistent with the agent’s existing beliefs. For example, consider an

agent whose initial belief is denoted as B = {s1, s2}. Upon receiving a first piece of evidence

ρ = {s3}, the agent updates its beliefs to B = {s1, s2} and B = {s1, s2, s3}. Notably, the upper

belief is expanded to incorporate the first piece of evidence, while the lower belief remains

unchanged due to the inconsistency with the initial belief. Then, if the agent receives a second

piece of evidence ρ′ = {s4} before any fusion events occur, the agent will update its beliefs to

B = {s1, s2} and B = {s1, s2, s4}.

In case that evidence collected by agents is inconsistent with their beliefs, both the original

belief and the updated belief will be passed forward to fusion. Let B′ and B
′

denote the fused

lower and upper beliefs, respectively, then for rough belief fusion we apply the following fusion

operator:
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B′ = B
′
= B1 ⊗B2 =


B1 ∩B2 : B1 ∩B2 ̸= ∅

(B1 ∪B2) ∪ (B1 ∩B2) : B1 ∩B2 = ∅ and B1 ∩B2 ̸= ∅

B1 ∪B2 : Otherwise

(5.3)

The fusion operator ensures that the agent’s upper and lower beliefs collapse to a single belief

after fusion. Therefore, the agents’ upper and lower beliefs can only differ after an updating

event with inconsistent evidence and then collapses to a single belief set after subsequent

updating based on consistent evidence or after fusion, which means that rough beliefs are

‘temporary’; they persist only until a consistent evidential updating or a event of belief fusion.

Assuming that two agents have undergone a single sequence involving one evidential updating

process and one belief fusion process, the relationship between the fused beliefs obtained using

the hybrid(Bh), negative(Bn), and DP(Bdp) updating methods is as follows:

Bh = Bn ∪Bdp(5.4)

Equation (5.4) shows that the hybrid method yields beliefs that are equivalent to the union

of those generated by the other two methods. A mathematical proof substantiating this claim

can be found in Appendix B. The rationale for this hybrid approach is that agents’ beliefs are

generally more reliable than the evidence collected, particularly in highly noisy environments

where the error rate ϵ is high. This is because agents’ beliefs have undergone iterative fusion

processes, i.e. error correct processes [26], which enhance their reliability. In Section 5.3.2 we

show how the hybrid approach prioritises agents’ beliefs over collected evidence in a single

evidential updating and belief fusion sequence.

5.3.2 Comparison with the Negative and DP updating

In this section we compare the agents’ fusion behaviours in a single evidential updating and

belief fusion sequence between 3 different updating strategies. When both agents involved in

the fusion have collected consistent evidence during the preceding evidential updating process

such that B1 = B1 and B2 = B2, the new fusion operator becomes equivalent to a standard

Dubois&Prade operator and all the 3 methods are equal in this case. However, the proposed

hybrid approach in section 5.3.1 changes the fusion logic when at least one of the agents receives

evidence which is not consistent with their lower beliefs (B ∩ E = ∅) before the belief fusion.

We first assume that the lower belief of only one of the fusion pair of agents is different from

its upper belief. For instance, there can be scenarios that one of the agent does not perform any

evidential updating after the last fusion and the other receives evidence inconsitent with its

lower belief. Additionally, there are also chances that both agents performs evidential updating

but only one of the agent receives inconsistent evidence. Without loss of generality, we let
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(a) Case 1a: B1 ∩ B2 = B1 ∩ B2 ≠ ∅, in this case the
outcome of all 3 methods are equal.
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(b) Case 1b: ∅ ̸= B1 ∩ B2 ⊂ B1 ∩ B2, in this case the
outcome of DP and Hybrid methods are equal and they
are both super sets of the outcome of negative method

Neg. /Hybrid Neg. /HybridE2 Neg. /DP. /Hy.
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(c) Case 2a: B1 ∩B2 = ∅, B1 ∩B2 ̸= ∅, in this case the
outcome of negative and Hybrid methods are equal and
they are both super sets of the outcome of DP method

Neg. /DP. /Hy. Neg. /DP. /Hy. DP. /Hy.
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(d) Case 2b: B1 ∩B2 = ∅, in this case the outcome of DP
and Hybrid methods are equal and they are both super
sets of the outcome of negative method

Figure 5.3: The Venn diagrams illustrating various belief updating methods when one of the
fusion pair receives inconsistent evidence, without loss of generality, we assume B1 ∩ E1 ̸= ∅
B2 ∩ E2 = ∅. The dotted circle represents the evidential updated belief of B1, i.e.B1 = B1 =
B1 ∩ E1 and the dashed circle represents B2 of which the green circle represents B2 and the
purple circles represents E2. Pink regions represent the outcomes of B1 ∩ B2; Yellow areas
represent outcomes of B1 ∩B2.

B1 ∩E1 ̸= ∅ and B2 ∩E2 = ∅, i.e. B1 = B1 and B2 ̸= B2. Figure 5.3 shows that the outcome of

the hybrid approach will always be the union of the outcome of the DP and negative methods.

For example, in Figure 5.3b agents using the negative method will not include the consistencies

between B1 and E2 while the other two methods will; in Figure 5.3c agents using DP method

will only include the consistencies between E2 and B1 without including the more reliable

agent’s belief B2, while the other two methods will retain them. In other words, the hybrid

approach will be able to maintain reliable beliefs as the negative method does and include

consistent evidence as the DP method does.

We then show Figure 5.4 for another scenario where both agents involved in pairwise fusion

have lower beliefs that differ from their upper beliefs. This indicates that they have both

experienced evidential updating prior to fusion and have received inconsistent evidence, which is

probable especially in noisy environments. Cases 1, 2, and 3 are corresponding to three distinct
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(a) Case 1: B1 ∩B2 ̸= ∅; in this case the outcome of DP and Hybrid methods are equal and they are both
super sets of the outcome of negative method.

B1

B2

E1

E2
B1

B2

E1

E2
B1

B2

E1

E2

B1

B2

E1

E2

B1

B2

E1

E2

B1

B2

E1E2
B1

B2

E1

E2

B1

B2

E1

E2

(b) Case 2: B1∩B2 = ∅, B1∩B2 ̸= ∅ and Case 3 (bottom right): B1∩B2 = ∅; In Case 2 the DP method
maintain the information from the evidence sets while the negative method maintain the information from
the belief. In Case 3 the outcome of DP and Hybrid methods are equal and they are both super sets of the
outcome of negative method

Figure 5.4: The Venn diagrams illustrating various belief updating methods when both agents
receive inconsistent evidence. Each circle represents a set of belief or evidence and their overlap
represents outcomes from different updating operations. Light green and white circles denote
the initial beliefs held by the agent and evidence respectively; the 2 dotted circles and 2 dashed
circles represents upper beliefs B1 and B2, respectively; Dark green areas indicate the results
obtained from the negative method; Red regions represent the outcomes of DP updating; Yellow
areas represent the overlap between outcomes of both negative and DP methods. The outcomes
of hybrid method are represented by all yellow, dark green, and red coloured regions, i.e. the
outcomes of hybrid method are the combined outcomes of DP and negative methods.
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scenarios for the fusion operator applied to rough beliefs. Figure 5.4a represents Case 1, where

the intersection between B1 and B2 is non-empty set. The bottom right figure of Figure 5.4b

shows Case 3 where there are no intersections between E1, evi2, B1, and B2 is empty. In both

instances, both the DP method and the hybrid method yield equivalent results, incorporating

more information from the evidence sets compared to the negative method. We then show Case

2 in the rest of Figure 5.4b where the application of the DP method results in the exclusion of

reliable information from the agents’ beliefs. There are cases where the fusion results excludes

information from the agents’ beliefs prior to the most recent evidence collection episode. For

example, this occurs in the scenario shown in the upper right figure of Figure 5.4b. In such

scenarios, the fusion results are totally based on the evidence from a single collection but not

on the agents’ beliefs that are learnt from all previous iterations. In addition, from Figures 5.3

and 5.4 we see that for negative updating the agents will simply ignore any inconsistent evidence

collected by agents while for the other 2 methods they bring the evidence to the fusion process,

while the DP method sometimes lose valuable information of agents’ beliefs and the fused belief

is purely depending on noisy evidence. The hybrid method, in contrast, retains both consistent

evidence and the agents’ beliefs, which ensures that the beliefs carried by both agents in to the

updating-fusion sequence is preserved in those scenarios. Agents will encounter such scenarios

more frequently when the environment is more noisy. Therefore, we anticipate that the new

approach will be particularly advantageous in scenarios where the evidence is highly noisy.

In summary, under the principle of agents’ beliefs are more reliable than the evidence,

the hybrid approach serves as a more versatile and adaptive evidential updating and fusion

mechanism, particularly suited for environments with high levels of error rates. Unlike the DP

methods, which may over-trust the evidence and discard valuable information in agents’ beliefs,

and the negative method, which under-trusts the evidence and excludes any information in

the inconsistent evidence set, the hybrid approach strikes a balance. It effectively incorporates

new evidence while also preserving existing beliefs. In the next section, we will use simulation

experiments to investigate the properties of the newly proposed approach, assess its performance

in terms of accuracy and time to convergence, and compare it with both DP and negative

updating methods.

5.3.3 Agent-based Simulations

In this section, we present simulation results using the proposed approach under the same

conditions as those used in Section 5.2.2 to maintain consistency . We recall the parameter

settings as follows: population size k = 100 and language size n = 8. We conduct experiments

in a noisy environment with varying error rates ϵ ∈ {0.2, 0.3, 0.4} and explore a range of

evidence and fusion rates (ρ, σ) ∈ [0.02, 1)2. We replicate the experiments for each combination

of parameters 50 times and enforce a maximum iteration limit of 20000.

In Figure 5.5, the simulation results demonstrate the significant improvements on learning
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accuracy achieved by the proposed new updating approach compared to DP updating and

negative updating. For ϵ = 0.2, the new approach consistently achieves an accuracy of 1

for all combinations of evidence and fusion rates for H̃ ⩽ 3. It outperforms the other two

methods, especially when the evidence rates are low. For ϵ = 0.3, the new approach maintains

high accuracy for H̃ ∈ {1, 2, 3}, with only a few exceptions at extremely low evidence rates.

For ϵ = 0.4, the new approach effectively resolves the convergence issues of DP updating

and also shows the most significant improvements of accuracy compared to the other 2 error

rates. Furthermore, we see more improvements in scenarios with more precise evidence. As

expected, in cases where agents update their belief with more imprecise evidence, the impact

of the new updating method is relatively modest, given their higher probability that they

update their belief by intersecting the evidence during the updating events in which all three

approaches are equivalent. However, in situations involving precise evidence, our proposed

approach effectively integrates these updating methods, demonstrating its efficacy in optimising

the learning accuracy. Consequently, the optimal updating threshold for the new approach is

likely to result in more precise options. For example, when ϵ = 0.4, it shifts to H̃ = 2 from

H̃ = 3 or H̃ = 4 for negative updating. In summary, the results suggest that the proposed

approach offers a potential alternative for evidential updating and belief fusion of social learning

frameworks and can enhance the reliability of social learning in noisy environments.

However, while the proposed approach shows improvements in learning accuracy, it is

important to note that these enhancements come at the expense of a lower speed of convergence.

In Figure 5.6 we show the average iterations required for the agents reaching a consensus and

the number 20000 will be used to calculate the average value for the runs that the agents fails to

converge within 20000 iterations. Compared to negative and DP updating shown in Figure 5.2,

the new approach requires more iterations for the agent to reach a consensus. For example,

when the (ρ, σ) = (0.98, 0.98) and H̃ = 1, the new approach requires 20 to 30 iterations for

the population to converge while the other two methods only need less than 20 iterations.

Although the new approach exhibits slower convergence, the population still converges within

300 iterations for low and medium error rates ϵ ∈ {0.2, 0.3} and low to medium levels of

evidential imprecision, H̃ ⩽ 4, for which the best overall accuracy is obtained. More specifically,

all approaches use similar numbers of iterations, in the range 100 to 300, to converge when the

fusion rate is low.

Similar to negative and DP updating, we see in Figure 5.6c that convergence is slower for a

higher error rate ϵ = 0.4 when using more precise evidence representations, but faster when

using more imprecise evidence representations. However, different to the other two methods,

the convergence time depends on both evidence and fusion rate for relatively precise evidences

H̃ < 3, while the fusion rate plays the primary role for negative updating and DP for the same

levels of evidential imprecision. For the highest error ϵ = 0.4, we see much slower convergence

and no convergence issues as we see in Figure 5.2b. Furthermore, from Figure 5.6 we also see
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Figure 5.5: Average accuracy at steady state for different evidence imprecision for the hybrid
approach and different error rates ϵ ∈ {0.2, 0.3, 0.4}, σ ∈ [0.02, 1), ρ ∈ [0.02, 1). From left to
right: H̃ ∈ {0, ..., 7}. The axis labels for the heat maps are provided in the top left figure as an
example. Comparing with Figure 5.1, this new approach outperforms both negative and DP
updating, especially for higher ϵ.

that the fastest convergence is obtained by thresholds H̃ ∈ {1, 2, 3} for error rates ϵ ∈ [0.2, 0.4]

respectively. These are consistent with the optimal Hamming thresholds for which agents

achieves best overall accuracy with negative updating. In other words, when considering the

time cost as well, H̃ = 1 and H̃ = 2 still appear to be the optimal thresholds for ϵ = 0.2

and ϵ = 0.3, respectively. However, for ϵ = 0.4, there is a trade-off between H̃ = 3 for faster

convergence speed and H̃ = 2 for higher accuracy.

In the case of ϵ = 0.4, a notable trend emerges when H̃ = 2 in Figure 5.6c, where we observe

a distinct slowdown in the convergence speed when the fusion rate σ is relatively high compared

to the evidence rate ρ. This slowdown of convergence come with decreased accuracy. From

H̃ = 2 in Figure 5.5c we see a transition from a constant high accuracy of 1.0 for combinations

of ρ and σ, which lead to faster convergence to more varied values clustered around 0.92

for combinations that result in slower convergence. Figure 5.7 shows the average cardinality

(logarithmically scaled) of agents’ beliefs within the population at the 20000th iteration. In
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Figure 5.6: Average iterations before convergence or different evidence imprecision with the
new approach for different error rates ϵ ∈ {0.2, 0.3, 0.4}, σ ∈ [0.02, 1), ρ ∈ [0.02, 1). From the
left to the right: H̃ ∈ {0, ..., 7}. The axis labels for the heat maps are provided in the top left
figure as an example.

Figure 5.7c we see that the average cardinality is between 20.5 and 2 for H̃ = 2 when the

fusion rate is relatively high compared to the evidence rate. In contrast, for H̃ ∈ {0, 1, 3, 4, 5, 6}
in Figure 5.7, the average cardinality eventually converges to 1 except for very low evidence

rates, for which the average cardinality is between 1 and 1.07(20.1). This may indicate that

the population fails to converge to a singleton belief for some of the 50 runs. In addition, for

the most imprecise evidential representation, H̃ = 7, average cardinality is greater than 1 in

most cases, as shown in Figure 5.7h. In summary, when the evidence rate is low or the evidence

is extremely imprecise, 20000 iterations are not always sufficient for the population to reach

consensus on a singleton belief.

In order to further investigate the speed-accuracy trade-off between different strategies,

we present Figure 5.8 showing the average belief accuracy of the population in the first 3000

iterations for a high error rate ϵ = 0.4. The error bands show the 0th and 100th percentile

across all 50 independent simulations . We choose other parameters as follows: the error rate
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Figure 5.7: Average cardinality log2|B| at steady state for different evidence imprecision defined
by various Hamming thresholds H̃ and ϵ = 0.4, σ ∈ [0, 1), and ρ ∈ (0, 1). The axis labels for
the heat maps are provided in the top left figure as an example.

ϵ = 0.4 and the threshold H̃ = 2, for which the performance using different methods varies the

most. In Figure 5.8 we see the hybrid approach (green lines) consistently outperforms negative

updating (orange lines) and DP updating (blue lines), showing both higher average accuracy

and reduced performance fluctuation than its counterparts for all combinations of ρ and σ.

The improvements are more significant when the evidence rate is low and the fusion rate is

relatively high. In Figures 5.8h and 5.8i we see that the populations using the hybrid approach

achieve accuracy over 0.9 while both the negative and DP updating methods showing similar

performance, α ≈ 0.75. Although Figures 5.2e, 5.2f and 5.6c show that populations using the

hybrid updating approach converge significantly slower than those using the other two methods

for the same evidence and fusion rate combinations, the speed-accuracy trade-off is actually

less significant as the new approach achieves higher accuracy than its counterparts before

convergence. For example, the accuracy of the hybrid approach surpasses the other two methods

within 200 iterations on average and reaches 0.9 at around 600th iterations in Figures 5.8h

and 5.8i. When the evidence rate is intermediate to high and the fusion rate is not higher

than the evidence rate, in Figures 5.8a to 5.8e, we see that the populations using the hybrid

108



5.3. HYBRID EVIDENTIAL UPDATING

0 500 1000 1500 2000 2500 3000
Iteration

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

DP updating 
Negative updating 
Hybrid 

(a) ρ = 0.9, σ = 0.1

0 500 1000 1500 2000 2500 3000
Iteration

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

DP updating 
Negative updating 
Hybrid 

(b) ρ = 0.9, σ = 0.5

0 500 1000 1500 2000 2500 3000
Iteration

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

DP updating 
Negative updating 
Hybrid 
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(e) ρ = 0.5, σ = 0.5
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(f) ρ = 0.5, σ = 0.9
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(h) ρ = 0.1, σ = 0.5
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(i) ρ = 0.1, σ = 0.9

Figure 5.8: Average accuracy for the first 3000 iterations for evidence rate ρ ∈ {0.1, 0.5, 0.9},
fusion rate σ ∈ {0.1, 0.5, 0.9}, error rate ϵ=0.4, and evidential imprecision H̃ = 2. The shaded
error bands around the curve represent the 0th and 100th percentiles.

approach converge on the true state of the world for all 50 runs, whereas at least one of the

other two methods also achieves high accuracy over 0.95 with some fluctuation. Furthermore,

when both the evidence and fusion rates are low (ρ = σ = 0.1), we see in Figure 5.8g accuracy

of systems using the hybrid approach overtake those using negative updating (α = 0.88 from

the 200th iteration) after 800 iterations and then surpass those using DP updating (α = 0.92

from the 600th iteration) after 1000 iterations. In summary, more significant speed-accuracy

trade-off is observed for lower evidence rates and fusion rates.

Additionally, we show Figure 5.9 for the average cardinality of the agents’ beliefs during

20000 iterations. For a majority of the evidence and fusion rate combinations, the agents’ average

belief cardinality eventually converges to 1 for all three methods. Notably, when employing the

DP updating strategy, there is a noticeable fluctuation in the average cardinality particularly

when the evidence rate significantly outweighs the fusion rate, ranging from 4 to 16 from the

500th to the 20000th iteration, as observed in Figures 5.9a and 5.9d. The low accuracy observed

in Figures 5.8a and 5.8d is likely to be a consequence of the difficult conditions under which
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(b) ρ = 0.9, σ = 0.5
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(c) ρ = 0.9, σ = 0.9
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(d) ρ = 0.5, σ = 0.1
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(e) ρ = 0.5, σ = 0.5
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(f) ρ = 0.5, σ = 0.9
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(g) ρ = 0.1, σ = 0.1
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(h) ρ = 0.1, σ = 0.5
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Figure 5.9: Average cardinality for evidence rate ρ ∈ {0.1, 0.5, 0.9}, fusion rate σ ∈ {0.1, 0.5, 0.9},
error rate ϵ=0.4, and evidential imprecision H̃ = 2. The shaded error bands around the curve
represent the 0th and 100th percentiles.

populations struggle to converge. The introduction of the hybrid approach effectively addresses

these convergence challenges. Nonetheless, there are instances that the hybrid method itself

experiences convergence issues, when the fusion rate is relatively high compared to the fusion

rate, as shown in Figures 5.9h and 5.9i. In such scenarios, the agents’ belief cardinality averages

out at around 2 from the 2500th iteration. Despite the convergence issues, the hybrid approach

still consistently emerges as the most accurate strategy in such scenarios, as evidenced by

Figures 5.8h and 5.8i.
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5.4 Discussion and Conclusion

In this chapter, we have explored an evidential updating strategy for social learning models

based on the Dubois&Prade combination rule and compared it with the classic negative updating

strategy. In addition, we have also proposed a new approach using a integrated method of these

two strategies of evidential updating. The proposed hybrid approach introduced the idea of

rough beliefs to the evidential updating process and blurred the traditional boundary between

evidential updating and belief fusion, by holding evidence that is inconsistent with the agent’s

belief by an upper belief to the fusion process.

Using agent-based simulation experiments, we have demonstrated that for a medium error

rate ϵ = 0.3 and for the optimal levels of evidential imprecision, populations using DP updating

achieve higher accuracy when the evidence rate is low compared to the fusion rate than negative

updating, i.e. DP updating is more robust to different evidence and fusion rates. For a lower

error rate ϵ = 0.2, we observed very similar performance of both accuracy and the time cost for

both updating methods. However, when the error rate is high, i.e. ϵ = 0.4, although systems

using DP updating achieve higher accuracy for some combinations of evidence and fusion rates,

they struggled to converge for low fusion rates and H̃ ∈ [0, 3] and the learning accuracy is

extremely low in those scenarios. Further exploration into the convergence issue is required for

future research.

To overcome the convergence failure of DP updating, we proposed a new approach that

integrated both methods to gain the strength of both of them. By analysing the different

dynamics of these methods by comparing them in different scenarios, we have demonstrated

that the newly proposed approach can enhance the learning accuracy of the social learning

model, especially in highly noisy environments, with slightly higher time costs. In addition to

the increased time cost, another limitation of the proposed approach is that it might require

more communication bandwidth to send over the upper and lower belief sets independently to

other agents. Based on the study in this chapter and Section 3.3.2, the model can be further

investigated with robotics applications to validate its efficacy and its time cost in practical

applications.
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Chapter 6

Conclusion

In Distributed AI and Multi-Agent Systems, social learning plays a critical role in enabling

agents to adapt and make decisions collectively. In this thesis we have argued that intentionally

increasing imprecision in the processes used by social learning models has a positive impact

on the ability of the system to learn. From this perspective, we have proposed a propositional

model where the imprecision of an agent’s belief can be directly represented by the cardinality

of their belief set. Based on this model, we have introduced imprecise evidential updating

processes and imprecise belief fusion. We have then studied this model in simulation using both

multi-agent systems and multi-robot systems and highlighted the strengths and limitations of

the proposed approaches. In this chapter we will summarise the key contributions and findings

of this thesis, which has focused on the role of imprecision in models for social learning. We

will also discuss future research directions in the application of social learning in these systems.

In Chapter 2 we described the propositional model in a social learning context. The proposed

model is distinct from other existing ones due to the agent’s belief about the world being

represented by a set of possible states of the world, consisting of an n-proposition tuple. The

true state of the world is therefore one of the many possible states, and the agents must learn

to identify which is the true state out of the set of all possible states. In other words, the

population needs to identify the truth value for every proposition instead of the single, optimal

option; such is the case in the best-of-n problem. We first introduced a set-based fusion operator

for combining two, possibly conflicting, beliefs, and then conducted agent-based simulation

experiments to study our proposed fusion operator. We find that the intersection-union fusion

operator generally performs well in noisy environments with limited direct evidence. However,

the effectiveness of social learning depends on the balance between the evidence rate ρ and

the fusion rate σ. We further extended the study by introducing a parameterised imprecise

fusion operator, allowing for the fusion process to produce fused beliefs with variable levels of

imprecision. Our findings reveal that when the fusion rate σ is high compared to the evidence

rate ρ, a less precise fusion operator leads to better outcomes. Importantly, it turns out that

the ideal level of imprecision in the fusion operator is primarily dictated by the rate of belief
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fusion and evidence gathering, rather than being significantly influenced by the degree to which

the evidence is noisy.

In Chapter 3 we investigated the impact of imprecise evidence on the social learning model

described in Chapter 2. We have emphasised the differences between imprecision and error in a

set-based social learning model. Our agent-based simulations show that the model is robust to

varying levels of imprecise evidence, as well as in the multi-robot location classification tasks.

For the robotic classification task, the model scales well in situations where the number of

locations is greater than the number of robots, and it performs effectively even with limited

access to some locations. However, it requires prior knowledge of location positions. In addition,

In addition, the performance of the system can be improved when a certain type of imprecise

evidence is adopted; specifically, when the agents receive an estimate of the state of the world

in the form of a singular, precise state and then use our Hamming neighbourhood approach to

imprecisify the estimate to a set including multiple possibly-true states. The simulation results

indicate that optimal accuracy and quickest convergence are achieved at a low-to-intermediate

level of precision, and the optimal level of imprecision is influenced by the error rate. In higher

error situations, the optimal level of evidential imprecision tend to be more imprecise. This

type of imprecise evidence also make the system more robust to changes in fusion and evidence

rates. For high error scenarios the most imprecise evidential model is also the most robust at a

high tolerance level.

In Chapter 4 we explored how combining imprecise fusion operators, proposed in Chapter 2,

and imprecise evidential updating, introduced in Chapter 3, can improve the performance of

social learning models. Through agent-based simulation, we discovered that using a low-to-

moderate level of imprecision in both evidence updating and belief fusion improves the accuracy

of learning outcomes, especially when the evidence rate is low compared to the fusion rate.

This results is consistent our conclusions in Chapters 2 and 3 in which imprecise fusion and

imprecise evidential updating are applied independently. This combined approach also presents

a speed-accuracy trade-off: higher accuracy is achieved at the expense of slower learning speed,

which becomes more pronounced when the fusion rate is high and evidence rate is low. With

respect to robustness, we found that selecting appropriate levels of imprecision depends on

the acceptable error level. Additionally, we examined how the system’s robustness varies with

different evidence and fusion rates. Results showed that for higher levels of accepted error the

systems should employ more imprecise fusion for more robustness to the changes in fusion

and evidence rate, however, the optimal level of evidential imprecision differs based on the

accepted error level. Finally, this chapter highlights the importance of carefully choosing and

adapting imprecision levels to fulfill specific system requirements and tolerances for error, all

while considering the balance needed to achieve the desired learning outcomes.

In Chapter 5, we compared the evidential updating strategy based on Dubois&Prade (DP)

fusion operator with the traditional negative updating approach in social learning models.
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We also introduced a hybrid method that combines both strategies. Through agent-based

simulations, we found that DP updating performs better in terms of accuracy when the evidence

rate is low compared to the fusion rate, specifically at a medium error rate. However, the method

struggles to converge in high-error scenarios. To address this, we introduced a hybrid approach

that combines the strengths of both DP and negative updating. This new model enhances

learning accuracy, particularly in noisy environments, albeit with slightly higher time costs. We

also noted that the hybrid model might require additional communication bandwidth, as it

needs to send over both the evidence and belief sets to other agents. In light of these findings,

we suggest that future research should focus on the underlying dynamics of the convergence

issues associated with DP updating and explore the potential for applying our hybrid model in

practical scenarios, such as the robotic location classification task introduced in Section 3.3.2.

This will validate not only its efficacy but also its operational costs in real-world applications.

While our findings contribute to the understanding of the role of imprecise information

in collective decision-making, they have also opened up a variety of research opportunities

in the area of social learning in distributed AI and Multi-Agent Systems. These avenues for

future research could be both extensions of the work already done or refinements that add

precision, robustness, or scalability to existing models or frameworks. Incorporating these various

elements into the existing framework could potentially transform it from a largely theoretical

construct into a versatile tool for solving complex, real-world problems using distributed AI

and multi-robot systems.

Firstly, the operator for belief fusion in the current framework is designed for pairwise

interactions among agents. The pooling size of agents interaction has a significant impact on

the speed and accuracy of collective decision-making task proposed in [63]. Therefore, one of

the immediate extensions could involve expanding the model to facilitate belief fusion in larger

pools of agents to investigate how the number of agents fusing their belief impacts on the

learning outcome of our proposed model. A generalised version of the belief fusion operator

(Equation (2.3)) was proposed in [15, Eq.4] using the idea of maximal-consistent subset [83],

which can fuse n sources rather than just 2. By increasing the size of the pool, we might gain

more rapid spread of information and faster learning, especially when individual agents have

incomplete information. Therefore, the system could achieve more rapid convergence with

greater pool size, which could be particularly useful in applications such as emergency response

systems, where each agent might have a unique and critical piece of information. However, it

should be noted that the increase of the agent pool could compromise the accuracy of learning

outcomes [63]. This is an ongoing problem that requires further exploration.

The communication architecture in the current model assumes a fully connected network

and we use a probabilistic fusion rate to model the real-world constrains. Recent studies shows

that constrained communication can improve the performance of social learning [8, 38]. Our

conclusion supports these findings; in our model the social learning is both more accurate and
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rapid when the fusion rate is low. While the probabilistic model is useful for theoretical proofs

and simulations, the actual network topologies of the system might be more complicated in

practice. Therefore, a significant line of future work could focus on investigating the model’s

performance under different interaction network architectures, such as small-world or scale-free

networks. Studying how these topological variations affect the speed and accuracy of social

learning could bring us closer to practical implementations and a better understanding of the

relationship between communication constraints and social learning performance.

In addition to factors like interaction network connectivity and physical communication

range limitations, introducing a preference or hierarchy for fusion partners over random selection

can enhance social learning performance. Currently, all agents are treated equally in belief fusion

events. For the rationale of the potential of this direction, we show Figure 6.1 for preliminary

results when removing the equality of agents during pooling. In non-random fusion, the agents

are not randomised before entering the pairwise pooling process, leading to a deterministic

selection of fusion partners. Specifically, agents are will combine beliefs with those that have

smaller indices in the pre-arranged order, as opposed to the random fusion where agents have

an equal probability of being paired with any other agent. For example, consider a pool of

agents with indices [1, 2, 3, 4]; the fusion pairs would be deterministic, [1, 2] and [3, 4]. If the

pool were [1, 3, 4, 5], the pairs would then be [1, 3] and [4, 5]. From the figure we see that this

modification improves overall accuracy when the fusion rates is high, for both the most precise

evidence and at optimal levels of evidential imprecision.

Heterogeneity among agents can be further studied as well. Heterogeneity among agents

could be beneficial or even crucial for the overall performance and adaptability of a multi-agent

system. In a multi-armed bandit problem, the best performance is achieved by a population

consisting of different types of social learning agents [84]. Varying the fusion and evidence-

updating strategies within the population can also improve the robustness of the social learning

model in dynamic environments [85]. Exploring variations in fusion and evidence thresholds

across diverse agents offers a promising direction for improving the robustness and adaptability

of multi-agent systems in future research.

Another future direction lies in the specifics of the Hamming neighbourhood model used

for the imprecise evidential updating. As it stands, the agents in our model must require a

complete estimate of the state of the world for the evidential updating event, i.e. they need

to receive information about every proposition under consideration. However, in real-world

scenarios, agents often have limited capacity and can only operate partial information, as the

robotic simulation we investigated in Section 3.3.2. An extension to the current work could

explore the dynamics of learning and decision-making based on incomplete estimates. This is

not merely an academic exercise; it reflects the constraints of many real-world applications

where full information is often unavailable or too costly to acquire. A model that can handle

partial estimates could provide a more flexible and realistic framework for social learning
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Figure 6.1: Average accuracy at steady state for (ρ, σ) ∈ (0, 1)2, ϵ = 0.3, H̃ ∈ {0, 2}, and for
random fusion(left) and non-random fusion (right). In scenarios where fusion is non-random,
systems with high fusion rates exhibit enhanced accuracy, in contrast to the diminished
performance observed in random fusion contexts.

in distributed systems. Building on these directions, we can also further advance the social

learning model into more robotic simulations. Specifically, the imprecise evidence model could be

implemented within a robotic location classification task, with partial or complete information

collected, depending on the parameter Nu. Furthermore, while the current model uses Hamming

distance-based measure for evidential imprecision and Jaccard similarity coefficients for fusion

imprecision, the door is open to experiment with other types of distance or similarity measures.

For example, we can use the Jaccard operator for evidential udpating and Hamming distance

based method for belief fusion.
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CHAPTER 6. CONCLUSION

The impact of physical movement of agents on the learning outcome can be further studied,

for example, belief fusion event may occur when agents are in close proximity to one another

rather than at fixed location as studied in Section 3.3.2. In other words, movement patterns

can affect how information is disseminated among agents. For example, in a swarm of robots,

their spatial arrangement and movement could influence how quickly and accurately they learn

about their environment. The frequency and nature of interactions between agents can change

depending on their movement. Agents that move and encounter different peers might have

more diverse information, affecting the learning process and outcomes and leading to different

learning outcomes. For example, agents that move randomly might learn slower than those

following a strategic pattern to cover more area or interact with more peers. The idea of the

proposed imprecise belief updating and fusion model may also be applied in the research of

opinion dynamics. For example, how imprecision influences opinion formation, information

diffusion, polarisation, consensus, and opinion cascades. Comparisons with existing models,

real-world applications, and robustness assessments can further advance our understanding.

A notable limitation of the current algorithm is its assumption of a static environment, which

may limit its applicability in scenarios where conditions and variables are subject to change

over time. Addressing this limitation opens a promising avenue for research, particularly in the

exploration of the algorithm’s adaptability to dynamic environments. A structured approach to

this exploration could involve introducing temporal variability into the propositions, thereby

simulating the evolving nature of real-world environments. This modification would enable

a systematic investigation into the algorithm’s responsiveness and adaptability to changes,

focusing on metrics such as the speed of response and the accuracy of decision-making in the

face of fluctuating conditions.

In conclusion, this thesis has navigated a social learning model for multi-agent system,

focussing on the role of imprecision in both evidential updating and belief fusion, as well as

their combined effects. We have clarified the difference between imprecision and inaccuracy of

evidence in noisy environment and demonstrated a pathway using imprecision toward enhanced

robustness and accuracy of social learning, especially in scenarios where the evidence collect by

agents are noisy. While our findings contribute to the understanding of the role of imprecise

information in collective decision-making, they also raise further questions that beckon further

investigation. As we have identified, the challenge of achieving a balance between the speed

of learning and its accuracy remains a salient concern. The practical implications of our work

are also worth noting, for example, our model has the potential to be useful in a location

classification task, where robots often operate with incomplete or imprecise information. The

applicability of our model in real-world scenarios, such as search and rescue operations involving

robots, opens up exciting avenues for future research. Finally, this thesis contributes to the

broader fields of multi-agent systems, social learning, and artificial intelligence by offering a

new way to think about the use of imprecise information. We anticipate that this work will
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spur further research, both theoretical and practical, in these important areas.
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Appendix A

List of Notations

Propositions and states

p Propositions

s States

S All possible states of the world

s∗ The true state of the world

se States received as evidence

Evidence and belief

E Evidence

B Beliefs

B Lower beliefs

B Upper beliefs

Beliefs after a updating-fusion sequence

Bn by negative updating

Bdp by DP updating

Bh by the hybrid updating

Probabilistic rates

σ Fusion rate

ρ Evidence rate

ϵ Error rate

Modelling parameters

A A population of agents

n Language size, the number of propositions

k Population size, the number of agents

Nu The maximum number of locations a robot can visit

in a single evidence collection episodes
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APPENDIX A. LIST OF NOTATIONS

γ Imprecise belief fusion threshold

H̃ Imprecise evidential updating threshold

H Hamming distance

J Jaccard similarity

Fusion operators and updating methods

⊙γ Imprecise belief fusion operator

⊙ Intersection-union or Dubois&Prade operator

⊗ Belief fusion operator for rough beliefs

|| Hybrid updating

Evaluation

α Accuracy

θ The average proportion of propositions

about which agent are correct or uncertain about

Fβ Fβ score

Robustness

δ Level of error tolerance

ĥ Level of robustness

ĥ(δ) Function of robustness given δ
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Appendix B

Proof of Relationships Between

Different Evidential Updating

Approaches

The objective of this appendix is to prove the relationship between the fused beliefs obtained

using various methods, as outlined in equation Equation (5.4) of the main text. We will employ

mathematical derivations to substantiate that the hybrid method, denoted as Bh, yields beliefs

that are the union of those acquired through the negative Bn and DP Bdp methods.

We let {B1,E1, B2,E2} be the beliefs before updating and the collected evidence of the two

agents respectively. For notational convenience we let I = (B1 ∩E2)∪ (B2 ∩E1)∪ (E1 ∩E2). We

first consider the scenario where both agents receive inconsistent evidence and the updating-

fusion belief transition functions is as follows:

Theorem B.1 (Negative updating and Dubois&Prade fusion). For ∀i ∈ {1, 2}, Bi ∩ Ei = ∅:

Bn = B1|E1⊙B2|E2 = B1 ⊙B2 =

B1 ∩B2 : B1 ∩B2 ̸= ∅

B1 ∪B2 : Otherwise

Theorem B.2 (DP updating and Dubois&Prade fusion). For ∀i ∈ {1, 2}, Bi ∩ Ei = ∅:

Bdp = (B1 ⊙ E1) ⊙ (B2 ⊙ E2) =


(B1 ∩B2) ∪ I : B1 ∩B2 ̸= ∅

I : B1 ∩B2 = ∅ and I ̸= ∅

B1 ∪B2 ∪ E1 ∪E2 : Otherwise

Theorem B.3 (The hybrid approach). For ∀i ∈ {1, 2}, Bi ∩ Ei = ∅:

Bh = B1||E1⊗B2||E2 =


Bdp ⊇ Bn : B1 ∩B2 ̸= ∅

Bdp ∪B1 ∪B2 = Bdp ∪Bn : B1 ∩B2 = ∅ and I ̸= ∅

Bdp ⊇ Bn : Otherwise
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APPENDIX B. PROOF OF RELATIONSHIPS BETWEEN DIFFERENT EVIDENTIAL

UPDATING APPROACHES

From Theorem B.1 to Theorem B.3 we show the transition models for scenarios where both

agents receives evidence that is inconsistent with their beliefs during the preceding evidence

collection episode. We have proven that Bh = Bdp ∪Bn stands in these cases. We then consider

the scenarios where only one of the agent receives inconsistent evidence. Without loss of

generality, we assume that B1 = B1 ∩ E1 ≠ ∅ and B2 ∩ E2 = ∅. The transition models are then

as follows:

Theorem B.4 (Negative updating and Dubois&Prade fusion). Suppose B1 ∩ E1 ≠ ∅ and

B2 ∩ E2 = ∅:

Bn = B1|E1⊙B2|E2 =

B1 ∩B2 : B1 ∩B2 ̸= ∅

B1 ∪B2 : Otherwise

Theorem B.5 (DP updating and Dubois&Prade fusion). Suppose B1∩E1 ̸= ∅ and B2∩E2 = ∅:

Bdp = (B1 ⊙ E1) ⊙ (B2 ⊙ E2) =


B1 ∩B2 ∪ (B1 ∩ E2) : B1 ∩B2 ̸= ∅

B1 ∩ E2 : B1 ∩B2 = ∅ and B1 ∩ E2 ̸= ∅

B1 ∪B2 ∪ E2 : Otherwise

Theorem B.6 (The hybrid approach). Suppose B1 ∩ E1 ̸= ∅ and B2 ∩ E2 = ∅:

B1||E1⊗B2||E2 =


Bdp ⊇ Bn : B1 ∩B2 ̸= ∅

Bdp ∪B1 ∪B2 = Bdp ∪Bn : B1 ∩B2 = ∅ and B1 ∩ E2 ̸= ∅

Bdp ⊇ Bn : Otherwise

From Theorem B.4 to Theorem B.6, we have proven that Bh = Bdp ∪Bn holds in this case.

For other scenarios, where both agents receive consistent evidence, these methods yield the same

fusion results; therefore, Bh = Bdp ∪ Bn also holds. In conclusion, as we have demonstrated,

this holds in all cases, whether agents receive consistent or inconsistent evidence.
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