2,957 research outputs found

    EASYFLOW: Keep Ethereum Away From Overflow

    Full text link
    While Ethereum smart contracts enabled a wide range of blockchain applications, they are extremely vulnerable to different forms of security attacks. Due to the fact that transactions to smart contracts commonly involve cryptocurrency transfer, any successful attacks can lead to money loss or even financial disorder. In this paper, we focus on the overflow attacks in Ethereum , mainly because they widely rooted in many smart contracts and comparatively easy to exploit. We have developed EASYFLOW , an overflow detector at Ethereum Virtual Machine level. The key insight behind EASYFLOW is a taint analysis based tracking technique to analyze the propagation of involved taints. Specifically, EASYFLOW can not only divide smart contracts into safe contracts, manifested overflows, well-protected overflows and potential overflows, but also automatically generate transactions to trigger potential overflows. In our preliminary evaluation, EASYFLOW managed to find potentially vulnerable Ethereum contracts with little runtime overhead.Comment: Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings. IEEE Press, 201

    Mode II Fracture of GFRP Laminates Bonded Interfaces under 4-ENF Test

    Get PDF
    This experiment studies the mode II fracture behavior of an adhesively bonded joint composed of GFRP laminates. A new beam model is presented to calculate the mode II ERR for GFRP bonded 4-ENF specimens. In this model, the deformation of 4-ENF specimens caused by the relative deflection angle between the upper and lower layers and by the bending deformation of the upper and lower layers, respectively, is introduced; the effect of the adhesive layer deformation is presented. The closed-form analytical solutions of compliance and energy release rate based on the crack compliance method are obtained. The high accuracy of present analytical solutions are verified by finite element analysis through bonded GFRP 4-ENF specimens and compared to the rigid joint model and the CBT model. The interfacial crack propagation is numerically simulated using shear fracture toughness determined in this experiment, from which the predicted critical load results are in good agreement with the experimental results. The conclusion indicates that the compliance and ERR can accurately be predicted using the new bonded 4-ENF beam model

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde
    • …
    corecore