168 research outputs found

    Exploring the trend of New Zealand housing prices to support sustainable development

    Get PDF
    The New Zealand housing sector is experiencing rapid growth that has a significant impact on society, the economy, and the environment. In line with the growth, the housing market for both residential and business purposes has been booming, as have house prices. To sustain the housing development, it is critical to accurately monitor and predict housing prices so as to support the decision-making process in the housing sector. This study is devoted to applying a mathematical method to predict housing prices. The forecasting performance of two types of models: autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR) analysis are compared. The ARIMA and regression models are developed based on a training-validation sample method. The results show that the ARIMA model generally performs better than the regression model. However, the regression model explores, to some extent, the significant correlations between house prices in New Zealand and the macro-economic conditions

    Optimization of the supplier selection process in prefabrication using BIM

    Get PDF
    Prefabrication offers substantial benefits including reduction in construction waste, material waste, energy use, labor demands, and delivery time, and an improvement in project constructability and cost certainty. As the material cost accounts for nearly 70% of the total cost of the prefabrication project, to select a suitable material supplier plays an important role in such a project. The purpose of this study is to present a method for supporting supplier selection of a prefabrication project. The proposed method consists of three parts. First, a list of assessment criteria was established to evaluate the suitability of supplier alternatives. Second, Building Information Modelling (BIM) was adopted to provide sufficient information about the project requirements and suppliers’ profiles, which facilitates the storage and sharing of information. Finally, the Analytic Hierarchy Process (AHP) was used to rank the importance of the assessment criteria and obtain the score of supplier alternatives. The suppliers were ranked based on the total scores. To illustrate how to use the proposed method, it was applied to a real prefabrication project. The proposed method facilitates the supplier selection process by providing sufficient information in an effective way and by improving the understanding of the project requirements

    New Zealand Building Project Cost and Its Influential Factors: A Structural Equation Modelling Approach

    Get PDF
    Construction industry significantly contributes to New Zealand's economic development. However, the delivery of construction projects is usually plagued by cost overruns, which turn potentially successful projects into money-losing ventures, resulting in various other unexpected negative impacts. The objectives of the study were to identify, classify, and assess the impacts of the factors affecting project cost in New Zealand. The proposed research model was examined with structural equation modelling. Recognising the lack of a systematic approach for assessing the influencing factors associated with project cost, this study identified 30 influencing factors from various sources and quantified their relative impacts. The research data were gathered through a questionnaire survey circulated across New Zealand construction industry. A total of 283 responses were received, with a 37% response rate. A model was developed for testing the relationship between project cost and the influential factors. The proposed research model was examined with structural equation modelling (SEM). According to the results of the analysis, market and industry conditions factor has the most significant effect on project cost, while regulatory regime is the second-most significant influencing factor, followed by key stakeholders' perspectives. The findings can improve project cost performance through the identification and evaluation of the cost-influencing factors. The results of such analysis enable industry professionals to better understand cost-related risks in the complex environment

    Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System

    Get PDF
    Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD). Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems

    Caracterização de moduladores RSOA em ligações de radio sobre fibra

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn this work physical and behavioral models for a bulk Reflective Semiconductor Optical Amplifier (RSOA) modulator in Radio over Fiber (RoF) links are proposed. The transmission performance of the RSOA modulator is predicted under broadband signal drive. At first, the simplified physical model for the RSOA modulator in RoF links is proposed, which is based on the rate equation and traveling-wave equations with several assumptions. The model is implemented with the Symbolically Defined Devices (SDD) in Advanced Design System (ADS) and validated with experimental results. Detailed analysis regarding optical gain, harmonic and intermodulation distortions, and transmission performance is performed. The distribution of the carrier and Amplified Spontaneous Emission (ASE) is also demonstrated. Behavioral modeling of the RSOA modulator is to enable us to investigate the nonlinear distortion of the RSOA modulator from another perspective in system level. The Amplitude-to-Amplitude Conversion (AM-AM) and Amplitude-to-Phase Conversion (AM-PM) distortions of the RSOA modulator are demonstrated based on an Artificial Neural Network (ANN) and a generalized polynomial model. Another behavioral model based on Xparameters was obtained from the physical model. Compensation of the nonlinearity of the RSOA modulator is carried out based on a memory polynomial model. The nonlinear distortion of the RSOA modulator is reduced successfully. The improvement of the 3rd order intermodulation distortion is up to 17 dB. The Error Vector Magnitude (EVM) is improved from 6.1% to 2.0%. In the last part of this work, the performance of Fibre Optic Networks for Distributed and Extendible Heterogeneous Radio Architectures and Service Provisioning (FUTON) systems, which is the four-channel virtual Multiple Input Multiple Output (MIMO), is predicted by using the developed physical model. Based on Subcarrier Multiplexing (SCM) techniques, four-channel signals with 100 MHz bandwidth per channel are generated and used to drive the RSOA modulator. The transmission performance of the RSOA modulator under the broadband multi channels is depicted with the figure of merit, EVM under di erent adrature Amplitude Modulation (QAM) level of 64 and 254 for various number of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers of 64, 512, 1024 and 2048.Nesta tese são propostos modelos físicos e comportamentais para o amplificador óptico semicondutor reflectivo (RSOA), tendo como objectivo a avaliação do seu desempenho quando utilizado como modulador em ligações de rádio sobre fibra (RoF). Os modelos propostos são capazes de prever o comportamento do dispositivo quando utilizado com sinais de banda larga bem como quando estimulado por sinais de elevada potência. Inicialmente propõe-se um modelo físico simplificado para o RSOA baseado nas equações de taxa e nas equações de propagação electromagnética. A implementação do modelo utiliza o ADS (Advanced Design Systems) e o bloco designado por dispositivo definido simbolicamente (SDD) para descrever as equações de taxa, assim como a propagação de fotões ao longo da cavidade. O modelo permite uma análise detalhada do ganho óptico, distorções harmônicas, intermodulação e seu desempenho de transmissão com portadoras RF modeladas. Foram também considerados modelos comportamentais. Um modelo baseado em rede neural artificial (ANN) e um modelo polinomial generalizado para banda base foram considerados tendo os parâmetros respectivos sido extraídos utilizando, para o efeito, dados obtidos experimentalmente. São demonstradas a característica da distorção resultante da conversão amplitude - amplitude (AM-AM) e conversão da fase - amplitude (AM-PM) no modulador RSOA. Um modelo baseado em parametros X, obtidos a partir do modelo físico, foi também analisado. Compensação da não-linearidade do modulador RSOA é realizada com base num modelo polinomial com memória. Demonstra-se que a distorção não linear do modulador RSOA pode ser compensada com sucesso. Com a compensação obtem-se uma redução de 17 dB da distorção introduzida pelos produtos de intermodulação de terceira ordem. O EVM (Error Vector Magnitude) apresenta uma melhoria de 6,1% para 2,0%. Na última parte deste trabalho considera-se uma configuração que representa a ligação ascendente por fibra de um sistema de antenas remoto a uma estação central de processamento. Com esta configuração pretendese demonstrar a possibilidade de implementação de uma tecnologia MIMO, suportada num sistema RoF. Baseado numa técnica de multiplexação subportadora (SCM), os sinais de quatro canais com largura de banda de 100 MHz por canal são multiplexados e utilizados para modelar o ganho do RSOA. O desempenho deste link óptico é caracterizado para modulações OFDM considerando diferentes números de sub-portadoras por símbolo (64, 512 , 1024 e 2048) assim como o formato QAM imposto sobre cada sub-portadora
    corecore