15 research outputs found

    Exploring Driving Behavior for Autonomous Vehicles Based on Gramian Angular Field Vision Transformer

    Full text link
    Effective classification of autonomous vehicle (AV) driving behavior emerges as a critical area for diagnosing AV operation faults, enhancing autonomous driving algorithms, and reducing accident rates. This paper presents the Gramian Angular Field Vision Transformer (GAF-ViT) model, designed to analyze AV driving behavior. The proposed GAF-ViT model consists of three key components: GAF Transformer Module, Channel Attention Module, and Multi-Channel ViT Module. These modules collectively convert representative sequences of multivariate behavior into multi-channel images and employ image recognition techniques for behavior classification. A channel attention mechanism is applied to multi-channel images to discern the impact of various driving behavior features. Experimental evaluation on the Waymo Open Dataset of trajectories demonstrates that the proposed model achieves state-of-the-art performance. Furthermore, an ablation study effectively substantiates the efficacy of individual modules within the model

    Integrating Strategies of Herbal Metabolomics, Network Pharmacology, and Experiment Validation to Investigate Frankincense Processing Effects

    Get PDF
    In-depth research on processing can promote the globalization of processed herbs. The purpose of this study is to propose an improved strategy for processing effect investigation. Frankincense and processed frankincense were used as research subjects. First, high-speed countercurrent chromatography (HSCCC) and preparation high-performance liquid chromatography (PHPLC) techniques were used for major compounds isolation and minor compounds concentration. Processed frankincense was subjected to two stepwise solvent systems, namely, n-hexane:ethanol:water (6:5:1) and n-hexane:methyl-acetate:acetonitrile:water (4:4:3:4), to yield 12 fractions, and 18 compounds were further separated. Second, a comprehensive metabolomic analysis conducted by ultrahigh-performance liquid-chromatography/electrospray-ionization mass spectrometry (UHPLC-Qtof-MS) coupled with multivariate statistics was performed to fully characterize the chemical components and discover the potential biomarkers between frankincense and processed frankincense. In total, 81 metabolites, including the 18 separated compounds, were selected as potential biomarkers between frankincense and processed frankincense among 153 detected compounds for their VIP values of greater than one. The tirucallane-type compounds and components with 9,11-dehydro structures clearly occurred at high levels in the processed frankincense, while lupine-type compounds and those with 11-keto structures were significantly higher in frankincense. Then, a network pharmacology model was constructed to decipher the potential mechanisms of processing. Intestinal absorption properties prediction indicated the possibility of processing-related absorption enhancement. A systematic analysis of the constructed networks showed that the C-T network was constructed with 18 potential biomarkers and 69 targets. TNF and IL-1β were among the top-ranked and were linked by 8 and 7 pathways, which were mainly involved in inflammation. The arachidonic acid metabolism pathway exhibited the highest number of target connections. Finally, the prediction was validated experimentally by an intestinal permeability and efficacy assay. The experiments provided convincing evidence that processed frankincense harbored stronger inhibition effects toward TNF-α-, IL-1β- and arachidonic acid-induced platelet aggregation. The processing procedure leads to changes of the chemical metabolites, which triggers the enhancement of absorption and cure efficiency. The global change of the metabolites, absorption and pharmacological effects of processing were depicted in a systematic manner

    Wearable Piezoelectric Airflow Transducers for Human Respiratory and Metabolic Monitoring

    No full text
    [Image: see text] Despite the importance of respiration and metabolism measurement in daily life, they are not widely available to ordinary people because of sophisticated and expensive equipment. Here, we first report a straightforward and economical approach to monitoring respiratory function and metabolic rate using a wearable piezoelectric airflow transducer (WPAT). A self-shielded bend sensor is designed by sticking two uniaxially drawn piezoelectric poly l-lactic acid films with different cutting angles, and then the bend sensor is mounted on one end of a plastic tube to engineer the WPAT. The airflow sensing principle of the WPAT is theoretically determined through finite element simulation, and the WPAT is calibrated with a pulse calibration method. We prove that the WPAT has similar accuracy (correlation coefficient >0.99) to a pneumotachometer in respiratory flow and lung volume assessment. We demonstrate metabolism measurement using the WPAT and the relationship between minute volume and metabolic rates via human wear trials. The mean difference of measured metabolic rates between the WPAT and a Biopac indirect calorimeter is 0.015 kcal/min, which shows comparable performance. Significantly, unlike the Biopac indirect calorimeter with an airflow sensor, an oxygen gas sensor, and a carbon dioxide gas sensor, we merely use the simple-structured WPAT to measure metabolism. Thus, we expect the WPAT technology to provide a precise, convenient, and cost-effective respiratory and metabolic monitoring solution for next-generation medical home care applications and wearable healthcare systems

    MOESM1 of Application of a strategy based on metabolomics guided promoting blood circulation bioactivity compounds screening of vinegar

    No full text
    Additional file 1: Table S1. The content of TMPZ in RV and WV. Table S2. The peak area and the relative peak area value of four potential biomarkers in different aging period. Table S3. The levels and factors investigated in BBD. Figure S1. HPLC chromatogram of TMPZ. Figure S2. The results of bioactivity screening. Figure S3. Diagnostic efficacy evaluation using ROC curves of the four potential biomarker metabolites in two different vinegar. Figure S4. Trends of time-series analysis graphs of four potential biomarkers. (A) TMPZ (MAPE: 2.05853, MAD: 1.67627, fitted curve: Yt = 60.81+5.089xt); (B) Dihydroergotamine (MAPE: 1.63096, MAD: 0.15345, fitted curve: Yt = 6.726+0.7121xt); (C) Harmine (MAPE: 1.72704, MAD: 0.01711, fitted curve: Yt = 0.7764+0.05780xt); (D) 1,2,3,4-tetrahydroharmine (MAPE: 3.76071, MAD: 0.04998, fitted curve: Yt = 0.9695+0.0910xt). Figure S5. Response surfaces estimated from the full factorial design for the content of total alkaloids

    Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field

    No full text
    The structure transition inside the Co-81.5at.%B alloy liquid has been studied by an in-situ magnetization measurement. A crossover was observed on the 1/ M - T curve during the overheating process, indicating that a liquid-liquid structure transition (LLST) took place in the melt. Based on this information, the effects of LLST on the solidification behavior, microstructure and tribology property were investigated experimentally. The sample solidified with the LLST exhibits significantly different solidification behaviors, i.e., the nucleation undercooling and the recalescence extent are conspicuously enlarged, and the solidification time is shortened. As a result, the microstructure is effectively refined and homogenized, and the hardness and wear resistance are significantly enhanced. The present work might be helpful for not only theoretically understanding the influence of LLST on the solidification behavior but also providing an alternative approach to tailor the microstructure and properties. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology

    MOESM2 of Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health

    No full text
    Additional file 2: Table S2. Alkaloids, coumarins, limonoids, carotenoids and phenolic acids isolated from Citrus species. The table summarized alkaloids, coumarins, limonoids, carotenoids and phenolic acids from Citrus species including C. aurantifolia, C. aurantium, C. bergamia, C. canaliculata, C. clementina, C. grandis, C. hassaku, C. junos, C. kinokuni, C. leiocarpa, C. limon, C. limonimedica, C. maxima, C. microcarpa, C. myrtifolia, C. paradisi,, C. reticulate,C. sinensis, C. tachibana and C. unshiu

    MOESM1 of Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health

    No full text
    Additional file 1: Table S1. Flavonoids isolated from Citrus species. The table summarized flavones (including polymethoxylated flavones), flavonols, flavanones and flavanonols from Citrus species including C. aurantifolia, C. aurantium, C. canaliculata, C. clementina, C. erythrosa, C. grandis, C. hassaku, C. hystrix, C. junos, C. kinokuni, C. leiocarpa, C. limon, C. limonimedica, C. medica, C. microcarpa, C. paradisi, C. reticulate, C. sinensis, C. suhuiensis, C. tachibana, C. tamurana and C. unshiu
    corecore