8,262 research outputs found
Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors
Dissipation is ubiquitous in quantum systems, and its interplay with
fluctuations is critical to maintaining quantum coherence. We experimentally
investigate the dissipation dynamics in single-walled carbon nanotubes coupled
to superconductors. The voltage-current characteristics display gate-tunable
hysteresis, with sizes that perfectly correlate with the normal state
resistance RN, indicating the junction undergoes a periodic modulation between
underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level
is tuned through a local conductance minimum, we observe a gate-controlled
transition from superconducting-like to insulating-like states, with a
"critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by
Physical Review Letter
Charged bottomonium-like structures and
The observation of two charged bottomonium-like structures and
has stimulated extensive studies of the properties of
and . In this talk, we briefly introduce the research status of
and combined with our theoretical progress.Comment: 6 pages, 1 table, 5 figures. Plenary talk given at the international
conference The Fifth Asia-Pacific Conference on Few-Body Systems in Physics
2011 (APFB2011), Seoul, Republic of Korea, 22-26 August 201
Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario
In a new measurement on neutrino oscillation , the
MiniBooNE Collaboration observes an excess of electron-like events at low
energy and the phenomenon may demand an explanation which obviously is beyond
the oscillation picuture. We propose that heavier neutrino decaying
into a lighter one via the transition process
where denotes any light products, could be a natural mechanism. The
theoretical model we employ here is the unparticle scenario established by
Georgi. We have studied two particular modes \nu_\mu\to \nu_e+\Un and
. Unfortunately, the number coming out from
the computation is too small to explain the observation. Moreover, our results
are consistent with the cosmology constraint on the neutrino lifetime and the
theoretical estimation made by other groups, therefore we can conclude that
even though neutrino decay seems plausible in this case, it indeed cannot be
the source of the peak at lower energy observed by the MiniBooNE collaboration
and there should be other mechanisms responsible for the phenomenon.Comment: 14 pages, conclusions are changed; published version for EPJ
Highly Enhanced Concentration and Stability of Reactive Ce^3+ on Doped CeO_2 Surface Revealed In Operando
Trivalent cerium ions in CeO_2 are the key active species in a wide range of catalytic and electro-catalytic reactions. We employed ambient pressure X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy to quantify simultaneously the concentration of the reactive Ce^3+ species on the surface and in the bulk of Sm-doped CeO_2(100) in hundreds of millitorr of H2–H2O gas mixtures. Under relatively oxidizing conditions, when the bulk cerium is almost entirely in the 4+ oxidation state, the surface concentration of the reduced Ce^3+ species can be over 180 times the bulk concentration. Furthermore, in stark contrast to the bulk, the surface’s 3+ oxidation state is also highly stable, with concentration almost independent of temperature and oxygen partial pressure. Our thermodynamic measurements reveal that the difference between the bulk and surface partial molar entropies plays a key role in this stabilization. The high concentration and stability of reactive surface Ce^3+ over wide ranges of temperature and oxygen partial pressure may be responsible for the high activity of doped ceria in many pollution-control and energy-conversion reactions, under conditions at which Ce^3+ is not abundant in the bulk
Stacks and D-Brane Bundles
In this paper we describe explicitly how the twisted ``bundles'' on a D-brane
worldvolume in the presence of a nontrivial B field, can be understood in terms
of sheaves on stacks. We also take this opportunity to provide the physics
community with a readable introduction to stacks and generalized spaces.Comment: 24 pages, LaTeX; v2: references adde
Epigenetic modifications as key regulators of Waldenstrom's Macroglobulinemia biology
Waldenstrom's Macroglobulinemia is a low-grade B-cell lymphoma characterized by the presence of lymphoplasmacytic cells in the bone marrow and a monoclonal immunoglobulin M in the circulation. Recent evidences support the hypothesis that epigenetic modifications lead to Waldesntrom cell proliferation and therefore play a crucial role in the pathogenesis of this disease. Indeed, while cytogenetic and gene expression analysis have demonstrated minimal changes; microRNA aberrations and modification in the histone acetylation status of primary Waldenstrom Macroglobulinemia tumor cells have been described. These findings provide a better understanding of the underlying molecular changes that lead to the initiation and progression of this disease
Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction
Reconnection of the self-generated magnetic fields in laser-plasma
interaction was first investigated experimentally by Nilson {\it et al.} [Phys.
Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a
solid target layer. An elongated current sheet (CS) was observed in the plasma
between the two laser spots. In order to more closely model magnetotail
reconnection, here two side-by-side thin target layers, instead of a single
one, are used. It is found that at one end of the elongated CS a fan-like
electron outflow region including three well-collimated electron jets appears.
The ( MeV) tail of the jet energy distribution exhibits a power-law
scaling. The enhanced electron acceleration is attributed to the intense
inductive electric field in the narrow electron dominated reconnection region,
as well as additional acceleration as they are trapped inside the rapidly
moving plasmoid formed in and ejected from the CS. The ejection also induces a
secondary CS
Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer\u27s disease
Interest in understanding the roles of white matter (WM) inflammation and damage in the pathophysiology of Alzheimer disease (AD) has been growing significantly in recent years. However, in vivo magnetic resonance imaging (MRI) techniques for imaging inflammation are still lacking. An advanced diffusion-based MRI method, neuro-inflammation imaging (NII), has been developed to clinically image and quantify WM inflammation and damage in AD. Here, we employed NII measures in conjunction with cerebrospinal fluid (CSF) biomarker classification (for β-amyloid (Aβ) and neurodegeneration) to evaluate 200 participants in an ongoing study of memory and aging. Elevated NII-derived cellular diffusivity was observed in both preclinical and early symptomatic phases of AD, while disruption of WM integrity, as detected by decreased fractional anisotropy (FA) and increased radial diffusivity (RD), was only observed in the symptomatic phase of AD. This may suggest that WM inflammation occurs earlier than WM damage following abnormal Aβ accumulation in AD. The negative correlation between NII-derived cellular diffusivity and CSF Aβ42 level (a marker of amyloidosis) may indicate that WM inflammation is associated with increasing Aβ burden. NII-derived FA also negatively correlated with CSF t-tau level (a marker of neurodegeneration), suggesting that disruption of WM integrity is associated with increasing neurodegeneration. Our findings demonstrated the capability of NII to simultaneously image and quantify WM cellularity changes and damage in preclinical and early symptomatic AD. NII may serve as a clinically feasible imaging tool to study the individual and composite roles of WM inflammation and damage in AD. Keywords: Inflammation, White matter damage, Diffusion basis spectrum imaging, Neuro-inflammation imaging, Cerebrospinal fluid, Preclinical Alzheimer disease, Early symptomatic Alzheimer disease, Magnetic resonance imagin
Effect of oxygen plasma etching on graphene studied with Raman spectroscopy and electronic transport
We report a study of graphene and graphene field effect devices after
exposure to a series of short pulses of oxygen plasma. We present data from
Raman spectroscopy, back-gated field-effect and magneto-transport measurements.
The intensity ratio between Raman "D" and "G" peaks, I(D)/I(G) (commonly used
to characterize disorder in graphene) is observed to increase approximately
linearly with the number (N(e)) of plasma etching pulses initially, but then
decreases at higher Ne. We also discuss implications of our data for extracting
graphene crystalline domain sizes from I(D)/I(G). At the highest Ne measured,
the "2D" peak is found to be nearly suppressed while the "D" peak is still
prominent. Electronic transport measurements in plasma-etched graphene show an
up-shifting of the Dirac point, indicating hole doping. We also characterize
mobility, quantum Hall states, weak localization and various scattering lengths
in a moderately etched sample. Our findings are valuable for understanding the
effects of plasma etching on graphene and the physics of disordered graphene
through artificially generated defects.Comment: 10 pages, 5 figure
Transportation Logistics and Economics of the Processed Meat and Related Industries in Southwest Kansas
Kansas is one of the nation’s leaders in meat production. Specifically, in the southwest Kansas region, there are more than three hundred feed yards and four meat processing plants. Traditionally, processed meat, some of the meat byproducts, grain, and other industry-related products are transported using large trucks (tractor-trailers). In addition to the highway system, there are two Class I railroad carriers and four Class III railroad carriers in the southwest Kansas region. Because there is a rich railroad network in the southwest Kansas region, it is necessary to study whether there is a need to utilize other transportation modes, such as railroad and intermodal, to transport goods and products for the processed meat and related industries. The objectives of this research are to study the transportation modes, their utilizations for the processed meat and related industries in southwest Kansas, and their impacts on local economic development. To achieve the objectives, the research team conducted a literature review, collected data through site visits, interviews, and web-sites, estimated vehicle miles of travel (VMT) by truck using TransCAD software, and projected future growth of processed meat and related industries as well as emerging industry development in the region. The research results demonstrate that there is heavy usage of trucks in the southwest Kansas region which need to be diversified to other transportation modes such as railroad and intermodal. To utilize railroad and intermodal transportation for the processed meat and related industries, there is a need to build required infrastructure near or within the feed yards and meat processing plants to support these transportation modes. In addition, to use the railroad for transporting feed grains, the system infrastructure of short line railroads needs to be improved. During this project, the research team also found that two new industries, dairy and ethanol, are emerging in southwest Kansas. With the development of new businesses, the demand on railroad service (both Class I and Class III) has been increasing recently. Thus, it is important to have adequate investment in railroad infrastructure, particularly, to keep short line railroads running rather than being abandoned
- …